[MySQL优化案例]系列 -- RAND()优化

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: [MySQL优化案例]系列 -- RAND()优化

众所周知,在MySQL中,如果直接 ORDER BY RAND() 的话,效率非常差,因为会多次执行。事实上,如果等值查询也是用 RAND() 的话也如此,我们先来看看下面这几个SQL的不同执行计划和执行耗时。

首先,看下建表DDL,这是一个没有显式自增主键的InnoDB表:

[yejr@imysql]> show create table t_innodb_random\G

*************************** 1. row***************************

Table:t_innodb_random

Create Table: CREATE TABLE `t_innodb_random` (

`id` int(10)unsigned NOT NULL,

`user` varchar(64)NOT NULL DEFAULT '',

KEY `idx_id` (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

往这个表里灌入一些测试数据,至少10万以上, id 字段也是乱序的。

[yejr@imysql]> select count(*) from t_innodb_random\G

*************************** 1. row***************************

count(*): 393216

1、常量等值检索:

[yejr@imysql]> explain select id fromt_innodb_random where id = 13412\G

*************************** 1. row***************************

id: 1

select_type: SIMPLE

table:t_innodb_random

type: ref

possible_keys: idx_id

key: idx_id

key_len: 4

ref: const

rows: 1

Extra: Using index

[yejr@imysql]> select id from t_innodb_random where id =13412;

1 row in set (0.00 sec)

可以看到执行计划很不错,是常量等值查询,速度非常快。

2、使用RAND()函数乘以常量,求得随机数后检索:

[yejr@imysql]> explain select id from t_innodb_randomwhere id = round(rand()*13241324)\G

*************************** 1. row***************************

id: 1

select_type: SIMPLE

table:t_innodb_random

type: index

possible_keys: NULL

key: idx_id

key_len: 4

ref: NULL

rows: 393345

Extra: Using where; Using index

[yejr@imysql]> select id from t_innodb_randomwhere id = round(rand()*13241324)\G

Empty set (0.26 sec)

可以看到执行计划很糟糕,虽然是只扫描索引,但是做了全索引扫描,效率非常差。因为WHERE条件中包含了RAND(),使得MySQL把它当做变量来处理,无法用常量等值的方式查询,效率很低。

我们把常量改成取t_innodb_random表的最大id值,再乘以RAND()求得随机数后检索看看什么情况:

[yejr@imysql]> explain select id from t_innodb_randomwhere id = round(rand()*(select max(id) from t_innodb_random))\G

*************************** 1. row***************************

id: 1

select_type:PRIMARY

table:t_innodb_random

type: index

possible_keys: NULL

key: idx_id

key_len: 4

ref: NULL

rows: 393345

Extra: Using where; Using index

*************************** 2. row***************************

id: 2

select_type:SUBQUERY

table: NULL

type: NULL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: NULL

Extra: Selecttables optimized away

[yejr@imysql]> select id from t_innodb_randomwhere id = round(rand()*(select max(id) from t_innodb_random))\G

Empty set (0.27 sec)

可以看到,执行计划依然是全索引扫描,执行耗时也基本相当。

3、改造成普通子查询模式 ,这里有两次子查询

[yejr@imysql]> explain select id fromt_innodb_random where id = (select round(rand()*(select max(id) fromt_innodb_random)) as nid)\G

*************************** 1. row***************************

id: 1

select_type:PRIMARY

table:t_innodb_random

type: index

possible_keys: NULL

key: idx_id

key_len: 4

ref: NULL

rows: 393345

Extra: Using where; Using index

*************************** 2. row***************************

id: 3

select_type:SUBQUERY

table: NULL

type: NULL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: NULL

Extra: Selecttables optimized away

[yejr@imysql]> select id from t_innodb_randomwhere id = (select round(rand()*(select max(id) from t_innodb_random)) as nid)\G

Empty set (0.27 sec)

可以看到,执行计划也不好,执行耗时较慢。

4、改造成JOIN关联查询,不过最大值还是用常量表示

[yejr@imysql]> explain select id fromt_innodb_random t1 join (select round(rand()*13241324) as id2) as t2 wheret1.id = t2.id2\G

*************************** 1. row***************************

id: 1

select_type:PRIMARY

table:<derived2>

type: system

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: 1

Extra:

*************************** 2. row***************************

id: 1

select_type:PRIMARY

table: t1

type: ref

possible_keys: idx_id

key: idx_id

key_len: 4

ref: const

rows: 1

Extra: Using where; Using index

*************************** 3. row***************************

id: 2

select_type:DERIVED

table: NULL

type: NULL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: NULL

Extra: Notables used

[yejr@imysql]> select id from t_innodb_randomt1 join (select round(rand()*13241324) as id2) as t2 where t1.id =t2.id2\G

Empty set (0.00 sec)

这时候执行计划就非常完美了,和最开始的常量等值查询是一样的了,执行耗时也非常之快。

这种方法虽然很好,但是有可能查询不到记录,改造范围查找,但结果LIMIT 1就可以了:

[yejr@imysql]> explain select id fromt_innodb_random where id > (select round(rand()*(select max(id) fromt_innodb_random)) as nid) limit 1\G

*************************** 1. row***************************

id: 1

select_type:PRIMARY

table:t_innodb_random

type: index

possible_keys: NULL

key: idx_id

key_len: 4

ref: NULL

rows: 393345

Extra: Using where; Using index

*************************** 2. row***************************

id: 3

select_type:SUBQUERY

table: NULL

type: NULL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: NULL

Extra: Selecttables optimized away

[yejr@imysql]> select id from t_innodb_randomwhere id > (select round(rand()*(select max(id) from t_innodb_random)) asnid) limit 1\G

*************************** 1. row***************************

id: 1301

1 row in set (0.00 sec)

可以看到,虽然执行计划也是全索引扫描,但是因为有了LIMIT 1,只需要找到一条记录,即可终止扫描,所以效率还是很快的。

小结:

从数据库中随机取一条记录时,可以把RAND()生成随机数放在JOIN子查询中以提高效率。

5、再来看看用ORDRRBY RAND()方式一次取得多个随机值的方式:

[yejr@imysql]> explain select id from t_innodb_randomorder by rand() limit 1000\G

*************************** 1. row***************************

id: 1

select_type: SIMPLE

table:t_innodb_random

type: index

possible_keys: NULL

key: idx_id

key_len: 4

ref: NULL

rows: 393345

Extra: Using index; Using temporary; Using filesort

[yejr@imysql]> select id from t_innodb_randomorder by rand() limit 1000;

1000 rows in set (0.41 sec)

全索引扫描,生成排序临时表,太差太慢了。

6、把随机数放在子查询里看看:

[yejr@imysql]> explain select id fromt_innodb_random where id > (select rand() * (select max(id) fromt_innodb_random) as nid) limit 1000\G

*************************** 1. row***************************

id: 1

select_type:PRIMARY

table:t_innodb_random

type: index

possible_keys: NULL

key: idx_id

key_len: 4

ref: NULL

rows: 393345

Extra: Using where; Using index

*************************** 2. row ***************************

id: 3

select_type:SUBQUERY

table: NULL

type: NULL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: NULL

Extra: Selecttables optimized away

[yejr@imysql]> select id from t_innodb_randomwhere id > (select rand() * (select max(id) from t_innodb_random) as nid)limit 1000\G

1000 rows in set (0.04 sec)

嗯,提速了不少,这个看起来还不赖:)

7、仿照上面的方法,改成JOIN和随机数子查询关联

[yejr@imysql]> explain select id fromt_innodb_random t1 join (select rand() * (select max(id) from t_innodb_random)as nid) t2 on t1.id > t2.nid limit 1000\G

*************************** 1. row***************************

id: 1

select_type:PRIMARY

table:<derived2>

type: system

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: 1

Extra:

*************************** 2. row***************************

id: 1

select_type:PRIMARY

table: t1

type: range

possible_keys: idx_id

key: idx_id

key_len: 4

ref: NULL

rows: 196672

Extra: Using where; Using index

*************************** 3. row***************************

id: 2

select_type:DERIVED

table: NULL

type: NULL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: NULL

Extra: Notables used

*************************** 4. row***************************

id: 3

select_type:SUBQUERY

table: NULL

type: NULL

possible_keys: NULL

key: NULL

key_len: NULL

ref: NULL

rows: NULL

Extra: Selecttables optimized away

[yejr@imysql]> select id from t_innodb_randomt1 join (select rand() * (select max(id) from t_innodb_random) as nid) t2 ont1.id > t2.nid limit 1000\G

1000 rows in set (0.00 sec)

可以看到,全索引检索,发现符合记录的条件后,直接取得1000行,这个方法是最快的。

综上,想从MySQL数据库中随机取一条或者N条记录时,最好把RAND()生成随机数放在JOIN子查询中以提高效率。

上面说了那么多的废话,最后简单说下,就是把下面这个SQL:

SELECT id FROM table ORDER BY RAND() LIMIT n;

改造成下面这个:

SELECT id FROM table t1, JOIN (SELECT RAND() * (SELECTMAX(id) FROM table) AS nid) t2 ON t1.id > t2.nid LIMIT n;

就可以享受在SQL中直接取得随机数了,不用再在程序中构造一串随机数去检索了。




            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
8天前
|
机器人 API 调度
基于 DMS Dify+Notebook+Airflow 实现 Agent 的一站式开发
本文提出“DMS Dify + Notebook + Airflow”三位一体架构,解决 Dify 在代码执行与定时调度上的局限。通过 Notebook 扩展 Python 环境,Airflow实现任务调度,构建可扩展、可运维的企业级智能 Agent 系统,提升大模型应用的工程化能力。
|
14天前
|
人工智能 数据可视化 Java
Spring AI Alibaba、Dify、LangGraph 与 LangChain 综合对比分析报告
本报告对比Spring AI Alibaba、Dify、LangGraph与LangChain四大AI开发框架,涵盖架构、性能、生态及适用场景。数据截至2025年10月,基于公开资料分析,实际发展可能随技术演进调整。
913 152
|
人工智能 前端开发 API
前端接入通义千问(Qwen)API:5 分钟实现你的 AI 问答助手
本文介绍如何在5分钟内通过前端接入通义千问(Qwen)API,快速打造一个AI问答助手。涵盖API配置、界面设计、流式响应、历史管理、错误重试等核心功能,并提供安全与性能优化建议,助你轻松集成智能对话能力到前端应用中。
651 154
|
负载均衡 Java 微服务
OpenFeign:让微服务调用像本地方法一样简单
OpenFeign是Spring Cloud中声明式微服务调用组件,通过接口注解简化远程调用,支持负载均衡、服务发现、熔断降级、自定义拦截器与编解码,提升微服务间通信开发效率与系统稳定性。
348 156
|
6天前
|
分布式计算 监控 API
DMS Airflow:企业级数据工作流编排平台的专业实践
DMS Airflow 是基于 Apache Airflow 构建的企业级数据工作流编排平台,通过深度集成阿里云 DMS(Data Management Service)系统的各项能力,为数据团队提供了强大的工作流调度、监控和管理能力。本文将从 Airflow 的高级编排能力、DMS 集成的特殊能力,以及 DMS Airflow 的使用示例三个方面,全面介绍 DMS Airflow 的技术架构与实践应用。
|
4天前
|
存储 Kubernetes Docker
部署eck收集日志到k8s
本文介绍基于ECK(Elastic Cloud on Kubernetes)在K8s中部署Elasticsearch、Kibana和Filebeat的完整流程。采用Helm方式部署ECK Operator,通过自定义YAML文件分别部署ES集群、Kibana及Filebeat,并实现日志采集与可视化。重点涵盖命名空间一致性、版本匹配、HTTPS配置禁用、资源限制、存储挂载及权限RBAC设置,支持系统日志、应用日志与容器日志的多源采集,适用于生产环境日志系统搭建。
243 94