巨坑:Sqoop任务中从MySQL导入tinyint(1)类型数据到hive(tinyint),数据为null

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 新手创建Sqoop任务必踩坑之一

问题描述

从Sqoop导入MySQL导入TINYINT(1)类型数据到hive(tinyint),数据为null。


问题原因

Sqoop在抽取数据到Hive或者HDFS时,会自动将类型为tinyint(1)的列转为boolean类型,这就是导致抽取到Hive或HDFS中的数据中只有0和1的原因。因为默认情况下,MySQL JDBC connector 会将tinyint(1)映射为java.sql.Types.BIT类型,而Sqoop默认会映射为boolean类型。


解决方案

MySQLJDBCconnector上添加tinyInt1isBit=false。比如:jdbc:mysql://pc-uf6ehtk5iia47i303.rwlb.rds.aliyuncs.com:3306/micro_user?tinyInt1isBit=false

image.png

注意:如果有多个参数,需要用&符号拼接,如果是在shell脚本中执行,&符号需要转义 ‘&’:

jdbc:mysql://14.21.xx.21:51x3x/${database}?zeroDateTimeBehavior=convertToNull&tinyInt1isBit=false


官网

https://sqoop.apache.org/docs/1.4.6/SqoopUserGuide.html#_mysql_import_of_tinyint_1_from_mysql_behaves_strangely

27.2.5. MySQL: Import of TINYINT(1) from MySQL behaves strangely Problem: Sqoop is treating TINYINT(1) columns as booleans, which is for example causing issues with HIVE import. This is because by default the MySQL JDBC connector maps the TINYINT(1) to java.sql.Types.BIT, which Sqoop by default maps to Boolean.

Solution: A more clean solution is to force MySQL JDBC Connector to stop converting TINYINT(1) to java.sql.Types.BIT by adding tinyInt1isBit=false into your JDBC path (to create something like jdbc:mysql://localhost/test?tinyInt1isBit=false). Another solution would be to explicitly override the column mapping for the datatype TINYINT(1) column. For example, if the column name is foo, then pass the following option to Sqoop during import: --map-column-hive foo=tinyint. In the case of non-Hive imports to HDFS, use --map-column-java foo=integer.


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
SQL 分布式计算 Hadoop
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
Hadoop-14-Hive HQL学习与测试 表连接查询 HDFS数据导入导出等操作 逻辑运算 函数查询 全表查询 WHERE GROUP BY ORDER BY(一)
235 4
|
SQL 分布式计算 关系型数据库
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
Hadoop-21 Sqoop 数据迁移工具 简介与环境配置 云服务器 ETL工具 MySQL与Hive数据互相迁移 导入导出
347 3
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
323 0
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
196 0
|
SQL 分布式计算 关系型数据库
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-22 Sqoop 数据MySQL到HDFS(全量) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
238 0
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用合集之从MySQL同步数据到Doris时,历史数据时间字段显示为null,而增量数据部分的时间类型字段正常显示的原因是什么
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
SQL 关系型数据库 MySQL
python在mysql中插入或者更新null空值
这段代码是Python操作MySQL数据库的示例。它执行SQL查询从表`a_kuakao_school`中选取`id`,`university_id`和`grade`,当`university_id`大于0时按升序排列。然后遍历结果,根据`row[4]`的值决定`grade`是否为`NULL`。若不为空,`grade`被格式化为字符串;否则,设为`NULL`。接着构造UPDATE语句更新`university`表中对应`id`的`grade`值,并提交事务。重要的是,字符串`NULL`不应加引号,否则更新会失败。
346 2
|
SQL 关系型数据库 MySQL
在 MySQL 中使用 IS NULL
【8月更文挑战第12天】
989 0
在 MySQL 中使用 IS NULL
|
SQL 关系型数据库 MySQL
mysql不等于<>取特定值反向条件的时候字段有null值或空值读取不到数据
对于数据库开发的专业人士来说,理解NULL的特性并知道如何正确地在查询中处理它们是非常重要的。以上所介绍的技巧和实例可以帮助你更精准地执行数据库查询,并确保数据的完整性和准确性。在编写代码和设计数据库结构时,牢记这些细节将有助于你避免许多常见的错误,提高数据库应用的质量与性能。
480 0
|
SQL 存储 索引
MySQL设计规约问题之为什么应该把字段定义为NOT NULL并且提供默认值
MySQL设计规约问题之为什么应该把字段定义为NOT NULL并且提供默认值

热门文章

最新文章

推荐镜像

更多