平衡二叉树

简介:

前面我写了一篇二叉排序树,最后我们提到提高二叉排序树的查找效率是让二叉树的形状均衡,所以就引入了平衡二叉树。

特点:

  • 一种特殊类型的二叉排序树

  • 所有结点的左、右子树深度之差的绝对值≤1

  • 左右子树是平衡二叉树;

平衡因子:该结点左子树和右子数的高度差

任意一个结点的平衡因子只能取:-1、0或1;如果树中任意一个结点的平衡因子的绝对值大于1,则这棵二叉树就失去平衡,不再是AVL树;

对于一棵有n个结点的AVL树,其高度保持在O(log2n)数量级,ASL也保持在O(log2n)量级。

这里写图片描述

如果在一棵AVL树中插入一个新结点,就有可能造成失衡,此时必须重新调整树的结构,使之恢复平衡。我们称调整平衡过程为平衡旋转

调整方法:找到最小不平衡子树,可将重新平衡的范围局限于这棵子树,在保持二叉排序树特性的前提下,调整最小不平衡子树中各个结点之间的链接关系,进行相应的旋转,使之成为新的平衡子树。

最小不平衡子树:离插入结点最近且平衡因子绝对值超过1的祖先结点,以该结点为根的子树称为最小不平衡子树。

假设最小不平衡子树的根结点为A,则失去平衡后进行调整的规律可归纳为以下四种情况。

  • LL平衡旋转

  • RR平衡旋转

  • LR平衡旋转

  • RL平衡旋转

1)LL平衡旋转:

若在A的左子树的左子树插入结点,使A的平衡因子从1增加到2,需要进行一次向右顺时针旋转(以B为旋转轴)
这里写图片描述

这里写图片描述

2)RR平衡旋转:

若在A的右子树上插入结点,使A的平衡因子从-1
增加至-2,需要进行一次逆时针旋转(以B为旋转轴)

这里写图片描述

这里写图片描述

3)LR平衡旋转:

若在A的左子树的右子树上插入结点,使A的平衡因子从1增加到2,需要先进行逆时针旋转,再顺时针旋转。(以插入的结点

目录
相关文章
|
6月前
二叉搜索树
二叉搜索树
30 2
|
5月前
|
C++
【c++】二叉搜索树
【c++】二叉搜索树
36 0
|
6月前
|
C++
平衡二叉树(C++)
平衡二叉树(C++)
35 1
|
存储 算法 关系型数据库
有了二叉树,平衡二叉树为什么还需要红黑树
有了二叉树,平衡二叉树为什么还需要红黑树
101 0
有了二叉树,平衡二叉树为什么还需要红黑树
51 # 二叉搜索树的实现
51 # 二叉搜索树的实现
35 0
|
算法
平衡二叉树(AVL树)
平衡二叉树(AVL树)
81 0
|
存储
【二叉搜索树】
【二叉搜索树】
48 0
|
算法
二叉搜索树、平衡二叉树
一、二叉搜索树 这里我们不用太多书面化的语言来定义,笔者认为在讨论数据结构、算法相关的内容时用太多书面化、学术化的语言是一种让人很烦的事情。咬文嚼字,不便于读者理解。 简单来说二叉树搜索树,其实就是用来做二分查找的一种二叉树。 特点是:根节点的左子树值均小于根节点的值,根节点的右子树值均大于根节点的值。 比如123 4 567建树的结果就是
57 0