③【万字详解·附代码】机器学习分类算法之K近邻(KNN)

简介: 【万字详解·附代码】机器学习分类算法之K近邻(KNN)

KNN算法代码实现

参数说明

class sklearn.neighbors.KNeighborsClassifier(
  n_neighbors=5, 
  weights=’uniform’, 
  algorithm=’auto’, 
  leaf_size=30, 
  p=2, 
  metric=’minkowski’, 
  metric_params=None, 
  n_jobs=None, 
  **kwargs)

image.png


image.png

image.png


话不多说,开始上代码

KNN例子代码

导入第三方库

#导入所需要的包
from sklearn.metrics import precision_score
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import classification_report
from sklearn.model_selection import GridSearchCV #网格搜索

初次加载模型和训练(无任何模型参数)

# 加载模型
model = KNeighborsClassifier()
# 训练模型
model.fit(X_train,y_train)
# 预测值
y_pred = model.predict(X_test)
'''
评估指标
'''
# 求出预测和真实一样的数目
true = np.sum(y_pred == y_test )
print('预测对的结果数目为:', true)
print('预测错的的结果数目为:', y_test.shape[0]-true)
# 评估指标
from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score,cohen_kappa_score
print('预测数据的准确率为: {:.4}%'.format(accuracy_score(y_test,y_pred)*100))
print('预测数据的精确率为:{:.4}%'.format(
      precision_score(y_test,y_pred)*100))
print('预测数据的召回率为:{:.4}%'.format(
      recall_score(y_test,y_pred)*100))
# print("训练数据的F1值为:", f1score_train)
print('预测数据的F1值为:',
      f1_score(y_test,y_pred))
print('预测数据的Cohen’s Kappa系数为:',
      cohen_kappa_score(y_test,y_pred))
# 打印分类报告
print('预测数据的分类报告为:','\n',
      classification_report(y_test,y_pred))

image.png

效果一般般,下面进行一个初次的重要参数,寻找

寻找最佳的邻居数

training_accuracy = []
test_accuracy = []
# n_neighbors取值从1到10
neighbors_settings = range(1, 11)
for n_neighbors in neighbors_settings:
    # 构建模型
    clf = KNeighborsClassifier(n_neighbors=n_neighbors)
    clf.fit(X_train, y_train)
    # 记录训练集精度
    training_accuracy.append(clf.score(X_train, y_train))
    # 记录泛化精度
    test_accuracy.append(clf.score(X_test, y_test))
plt.plot(neighbors_settings, training_accuracy, label="training accuracy")
plt.plot(neighbors_settings, test_accuracy, label="test accuracy")
plt.ylabel("Accuracy")
plt.xlabel("n_neighbors")
plt.legend()

通过可视化分析得知,在n_neighbors取到:4,7,8,效果还可以,但是推荐使用5,因为综合训练集和测试集,还是不错的


image.png


参数调优


这里提前使用一个网格搜索的知识,后面更新完所有的模型,将会详细的用一篇文章来讲解模型如何调优,其中就有网格搜索


这里根据已有的参数进行迭代,最后返回最佳的参数

#超参数配置
param_knn = {
'n_neighbors': list(range(3,15,2)),
'algorithm':['auto', 'ball_tree', 'kd_tree', 'brute'],
'metric':['euclidean','manhattan','chebyshev','minkowski'],
'p':list(range(1,6)),
'weights':['distance','uniform']
}
#KNN的超参数
gsearch_knn = GridSearchCV( model , param_grid = param_knn, cv=10 )
gsearch_knn.fit( X_train, y_train )
gsearch_knn.best_params_
gsearch_knn.best_score_
best_knn=gsearch_knn.best_estimator_
#训练模型+预测数据
y_pred = best_knn.predict(X_test)

第二次训练和评估

'''
评估指标
'''
# 求出预测和真实一样的数目
true = np.sum(y_pred == y_test )
print('预测对的结果数目为:', true)
print('预测错的的结果数目为:', y_test.shape[0]-true)
# 评估指标
from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score,cohen_kappa_score
print('预测数据的准确率为: {:.4}%'.format(accuracy_score(y_test,y_pred)*100))
print('预测数据的精确率为:{:.4}%'.format(
      precision_score(y_test,y_pred)*100))
print('预测数据的召回率为:{:.4}%'.format(
      recall_score(y_test,y_pred)*100))
# print("训练数据的F1值为:", f1score_train)
print('预测数据的F1值为:',
      f1_score(y_test,y_pred))
print('预测数据的Cohen’s Kappa系数为:',
      cohen_kappa_score(y_test,y_pred))
# 打印分类报告
print('预测数据的分类报告为:','\n',
      classification_report(y_test,y_pred))

image.png

发现效果明显的有所提升!

最优参数:

image.png

然后将这些最佳参数添加到模型,将一些自定义的模型参数也添加进去,看看效果如何:

# 加载模型
model = KNeighborsClassifier(n_neighbors=7,algorithm='ball_tree',metric='manhattan',p=1,weights='distance')
# 训练模型
model.fit(X_train,y_train)
# 预测值
y_pred = model.predict(X_test)
'''
评估指标
'''
# 求出预测和真实一样的数目
true = np.sum(y_pred == y_test )
print('预测对的结果数目为:', true)
print('预测错的的结果数目为:', y_test.shape[0]-true)
# 评估指标
from sklearn.metrics import accuracy_score,precision_score,recall_score,f1_score,cohen_kappa_score
print('预测数据的准确率为: {:.4}%'.format(accuracy_score(y_test,y_pred)*100))
print('预测数据的精确率为:{:.4}%'.format(
      precision_score(y_test,y_pred)*100))
print('预测数据的召回率为:{:.4}%'.format(
      recall_score(y_test,y_pred)*100))
# print("训练数据的F1值为:", f1score_train)
print('预测数据的F1值为:',
      f1_score(y_test,y_pred))
print('预测数据的Cohen’s Kappa系数为:',
      cohen_kappa_score(y_test,y_pred))
# 打印分类报告
print('预测数据的分类报告为:','\n',
      classification_report(y_test,y_pred))

image.png


效果非常棒!

ROC曲线和AUC

from sklearn.metrics import precision_recall_curve
from sklearn import metrics
# 预测正例的概率
y_pred_prob=model.predict_proba(X_test)[:,1]
# y_pred_prob ,返回两列,第一列代表类别0,第二列代表类别1的概率
#https://blog.csdn.net/dream6104/article/details/89218239
fpr, tpr, thresholds = metrics.roc_curve(y_test,y_pred_prob, pos_label=2)
#pos_label,代表真阳性标签,就是说是分类里面的好的标签,这个要看你的特征目标标签是0,1,还是1,2
roc_auc = metrics.auc(fpr, tpr)  #auc为Roc曲线下的面积
# print(roc_auc)
plt.figure(figsize=(8,6))
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.plot(fpr, tpr, 'r',label='AUC = %0.2f'% roc_auc)
plt.legend(loc='lower right')
# plt.plot([0, 1], [0, 1], 'r--')
plt.xlim([0, 1.1])
plt.ylim([0, 1.1])
plt.xlabel('False Positive Rate') #横坐标是fpr
plt.ylabel('True Positive Rate')  #纵坐标是tpr
plt.title('Receiver operating characteristic example')
plt.show()

image.png


这个时候,发现模型的效果已经可以了,自我感觉还是不错的,但是在基于上一篇文章,贝叶斯模型,我们使用了特征筛选的方法,来提高模型的效果,这里是不是也可以了。


我通过了一些树模型进行筛选出最佳的14个特征,发现效果并没有全部放入模型的效果好


image.png


筛选出最佳的特征如上


image.png


发现效果没有上面那一个好,这是为什么呢,可能这里和KNN的算法原理有关,这里特征通过专家的验证,并不是毫无相关的特征,所以KNN的联合特征算法在这里得到了验证,一般过特征的选取来提高模型的效果是基于不同的模型


相关文章
|
11天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
40 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
21天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
1月前
|
机器学习/深度学习 算法
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理
|
1月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)
|
1月前
|
机器学习/深度学习 算法 API
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
|
1月前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
35 0
|
1月前
|
机器学习/深度学习 算法
机器学习入门:梯度下降算法(上)
机器学习入门:梯度下降算法(上)
下一篇
无影云桌面