隐私计算FATE-多分类神经网络算法测试

简介: 本文分享基于Fate使用横向联邦神经网络算法对多分类的数据进行模型训练,并使用该模型对数据进行多分类预测。

封面.jpg

一、说明

本文分享基于 Fate 使用 横向联邦 神经网络算法多分类 的数据进行 模型训练,并使用该模型对数据进行 多分类预测

  • 二分类算法:是指待预测的 label 标签的取值只有两种;直白来讲就是每个实例的可能类别只有两种(0 或者 1),例如性别只有 或者 ;此时的分类算法其实是在构建一个分类线将数据划分为两个类别。
  • 多分类算法:是指待预测的 label 标签的取值可能有多种情况,例如个人爱好可能有 篮球足球电影 等等多种类型。常见算法:Softmax、SVM、KNN、决策树。

关于 Fate 的核心概念、单机部署、训练以及预测请参考以下相关文章:

二、准备训练数据

上传到 Fate 里的数据有两个字段名必需是规定的,分别是主键为 id 字段和分类字段为 y 字段,y 字段就是所谓的待预测的 label 标签;其他的特征字段(属性)可任意填写,例如下面例子中的 x0 - x9

例如有一条用户数据为: 收入 : 10000, 负债 : 5000, 是否有还款能力 : 1 ;数据中的 收入负债 就是特征字段,而 是否有还款能力 就是分类字段。

本文只描述关键部分,关于详细的模型训练步骤,请查看文章《隐私计算FATE-模型训练

2.1. guest端

10条数据,包含1个分类字段 y 和 10 个标签字段 x0 - x9

train_guest.jpg

y 值有 0、1、2、3 四个分类

上传到 Fate 中,表名为 muti_breast_homo_guest 命名空间为 experiment

2.2. host端

10条数据,字段与 guest 端一样,但是内容不一样

train_host.jpg

上传到 Fate 中,表名为 muti_breast_homo_host 命名空间为 experiment

三、执行训练任务

3.1. 准备dsl文件

创建文件 homo_nn_dsl.json 内容如下 :

{
    "components": {
        "reader_0": {
            "module": "Reader",
            "output": {
                "data": [
                    "data"
                ]
            }
        },
        "data_transform_0": {
            "module": "DataTransform",
            "input": {
                "data": {
                    "data": [
                        "reader_0.data"
                    ]
                }
            },
            "output": {
                "data": [
                    "data"
                ],
                "model": [
                    "model"
                ]
            }
        },
        "homo_nn_0": {
            "module": "HomoNN",
            "input": {
                "data": {
                    "train_data": [
                        "data_transform_0.data"
                    ]
                }
            },
            "output": {
                "data": [
                    "data"
                ],
                "model": [
                    "model"
                ]
            }
        }
    }
}

3.2. 准备conf文件

创建文件 homo_nn_multi_label_conf.json 内容如下 :

{
    "dsl_version": 2,
    "initiator": {
        "role": "guest",
        "party_id": 9999
    },
    "role": {
        "arbiter": [
            10000
        ],
        "host": [
            10000
        ],
        "guest": [
            9999
        ]
    },
    "component_parameters": {
        "common": {
            "data_transform_0": {
                "with_label": true
            },
            "homo_nn_0": {
                "encode_label": true,
                "max_iter": 15,
                "batch_size": -1,
                "early_stop": {
                    "early_stop": "diff",
                    "eps": 0.0001
                },
                "optimizer": {
                    "learning_rate": 0.05,
                    "decay": 0.0,
                    "beta_1": 0.9,
                    "beta_2": 0.999,
                    "epsilon": 1e-07,
                    "amsgrad": false,
                    "optimizer": "Adam"
                },
                "loss": "categorical_crossentropy",
                "metrics": [
                    "accuracy"
                ],
                "nn_define": {
                    "class_name": "Sequential",
                    "config": {
                        "name": "sequential",
                        "layers": [
                            {
                                "class_name": "Dense",
                                "config": {
                                    "name": "dense",
                                    "trainable": true,
                                    "batch_input_shape": [
                                        null,
                                        18
                                    ],
                                    "dtype": "float32",
                                    "units": 5,
                                    "activation": "relu",
                                    "use_bias": true,
                                    "kernel_initializer": {
                                        "class_name": "GlorotUniform",
                                        "config": {
                                            "seed": null,
                                            "dtype": "float32"
                                        }
                                    },
                                    "bias_initializer": {
                                        "class_name": "Zeros",
                                        "config": {
                                            "dtype": "float32"
                                        }
                                    },
                                    "kernel_regularizer": null,
                                    "bias_regularizer": null,
                                    "activity_regularizer": null,
                                    "kernel_constraint": null,
                                    "bias_constraint": null
                                }
                            },
                            {
                                "class_name": "Dense",
                                "config": {
                                    "name": "dense_1",
                                    "trainable": true,
                                    "dtype": "float32",
                                    "units": 4,
                                    "activation": "sigmoid",
                                    "use_bias": true,
                                    "kernel_initializer": {
                                        "class_name": "GlorotUniform",
                                        "config": {
                                            "seed": null,
                                            "dtype": "float32"
                                        }
                                    },
                                    "bias_initializer": {
                                        "class_name": "Zeros",
                                        "config": {
                                            "dtype": "float32"
                                        }
                                    },
                                    "kernel_regularizer": null,
                                    "bias_regularizer": null,
                                    "activity_regularizer": null,
                                    "kernel_constraint": null,
                                    "bias_constraint": null
                                }
                            }
                        ]
                    },
                    "keras_version": "2.2.4-tf",
                    "backend": "tensorflow"
                },
                "config_type": "keras"
            }
        },
        "role": {
            "host": {
                "0": {
                    "reader_0": {
                        "table": {
                            "name": "muti_breast_homo_host",
                            "namespace": "experiment"
                        }
                    }
                }
            },
            "guest": {
                "0": {
                    "reader_0": {
                        "table": {
                            "name": "muti_breast_homo_guest",
                            "namespace": "experiment"
                        }
                    }
                }
            }
        }
    }
}
注意 reader_0 组件的表名和命名空间需与上传数据时配置的一致。

3.3. 提交任务

执行以下命令:

flow job submit -d homo_nn_dsl.json -c homo_nn_multi_label_conf.json

执行成功后,查看 dashboard 显示:

训练dashboard.png

四、准备预测数据

与前面训练的数据字段一样,但是内容不一样,y 值全为 0

4.1. guest端

predict_guest.jpg

上传到 Fate 中,表名为 predict_muti_breast_homo_guest 命名空间为 experiment

4.2. host端

predict_host.jpg

上传到 Fate 中,表名为 predict_muti_breast_homo_host 命名空间为 experiment

五、准备预测配置

本文只描述关键部分,关于详细的预测步骤,请查看文章《隐私计算FATE-离线预测

创建文件 homo_nn_multi_label_predict.json 内容如下 :

{
    "dsl_version": 2,
    "initiator": {
        "role": "guest",
        "party_id": 9999
    },
    "role": {
        "arbiter": [
            10000
        ],
        "host": [
            10000
        ],
        "guest": [
            9999
        ]
    },
    "job_parameters": {
        "common": {
            "model_id": "arbiter-10000#guest-9999#host-10000#model",
            "model_version": "202207061504081543620",
            "job_type": "predict"
        }
    },
    "component_parameters": {
        "role": {
            "guest": {
                "0": {
                    "reader_0": {
                        "table": {
                            "name": "predict_muti_breast_homo_guest",
                            "namespace": "experiment"
                        }
                    }
                }
            },
            "host": {
                "0": {
                    "reader_0": {
                        "table": {
                            "name": "predict_muti_breast_homo_host",
                            "namespace": "experiment"
                        }
                    }
                }
            }
        }
    }
}

注意以下两点:

  1. model_idmodel_version 需修改为模型部署后的版本号。
  2. reader_0 组件的表名和命名空间需与上传数据时配置的一致。

六、执行预测任务

执行以下命令:

flow job submit -c homo_nn_multi_label_predict.json

执行成功后,查看 homo_nn_0 组件的数据输出:

预测结果.png

可以看到算法输出的预测结果。

目录
相关文章
|
30天前
|
机器学习/深度学习 算法 数据可视化
利用SVM(支持向量机)分类算法对鸢尾花数据集进行分类
本文介绍了如何使用支持向量机(SVM)算法对鸢尾花数据集进行分类。作者通过Python的sklearn库加载数据,并利用pandas、matplotlib等工具进行数据分析和可视化。
149 70
|
19天前
|
计算机视觉
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
45 5
RT-DETR改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
|
2天前
|
算法
MATLAB在风险管理中的应用:从VaR计算到压力测试
本文介绍如何使用MATLAB进行风险管理,涵盖风险度量(如VaR)、压力测试和风险分解。通过历史模拟法、参数法和蒙特卡洛模拟法计算VaR,评估投资组合在极端市场条件下的表现,并通过边际VaR和成分VaR识别风险来源。结合具体案例和代码实现,帮助读者掌握MATLAB在风险管理中的应用,确保投资组合的稳健性。
|
2月前
|
机器学习/深度学习 数据采集 人工智能
基于Huffman树的层次化Softmax:面向大规模神经网络的高效概率计算方法
层次化Softmax算法通过引入Huffman树结构,将传统Softmax的计算复杂度从线性降至对数级别,显著提升了大规模词汇表的训练效率。该算法不仅优化了计算效率,还在处理大规模离散分布问题上提供了新的思路。文章详细介绍了Huffman树的构建、节点编码、概率计算及基于Gensim的实现方法,并讨论了工程实现中的优化策略与应用实践。
88 15
基于Huffman树的层次化Softmax:面向大规模神经网络的高效概率计算方法
|
22天前
|
计算机视觉
YOLOv11改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
YOLOv11改进策略【卷积层】| CGblock 内容引导网络 利用不同层次信息,提高多类别分类能力 (含二次创新)
25 0
|
4月前
|
网络协议
计算机网络的分类
【10月更文挑战第11天】 计算机网络可按覆盖范围(局域网、城域网、广域网)、传输技术(有线、无线)、拓扑结构(星型、总线型、环型、网状型)、使用者(公用、专用)、交换方式(电路交换、分组交换)和服务类型(面向连接、无连接)等多种方式进行分类,每种分类方式揭示了网络的不同特性和应用场景。
|
2月前
|
机器学习/深度学习 Serverless 索引
分类网络中one-hot编码的作用
在分类任务中,使用神经网络时,通常需要将类别标签转换为一种合适的输入格式。这时候,one-hot编码(one-hot encoding)是一种常见且有效的方法。one-hot编码将类别标签表示为向量形式,其中只有一个元素为1,其他元素为0。
88 2
|
3月前
|
数据库连接 Go 数据库
Go语言中的错误注入与防御编程。错误注入通过模拟网络故障、数据库错误等,测试系统稳定性
本文探讨了Go语言中的错误注入与防御编程。错误注入通过模拟网络故障、数据库错误等,测试系统稳定性;防御编程则强调在编码时考虑各种错误情况,确保程序健壮性。文章详细介绍了这两种技术在Go语言中的实现方法及其重要性,旨在提升软件质量和可靠性。
70 1
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
92 3
|
3月前
|
机器学习/深度学习 自然语言处理 前端开发
前端神经网络入门:Brain.js - 详细介绍和对比不同的实现 - CNN、RNN、DNN、FFNN -无需准备环境打开浏览器即可测试运行-支持WebGPU加速
本文介绍了如何使用 JavaScript 神经网络库 **Brain.js** 实现不同类型的神经网络,包括前馈神经网络(FFNN)、深度神经网络(DNN)和循环神经网络(RNN)。通过简单的示例和代码,帮助前端开发者快速入门并理解神经网络的基本概念。文章还对比了各类神经网络的特点和适用场景,并简要介绍了卷积神经网络(CNN)的替代方案。
674 1