浅析数据库算法与数据结构(三) B树

简介: 上一期我们谈到了数据库实现快速查找的所使用的的HASH算法,能够实现O(1)复杂的快速查找,HASH算法虽然好,但是有一个致命的缺点,就是HASH函数算出的散列值,通常是随机分布,没有顺序性。这时候我们就需要使用到B树

上一期我们谈到了数据库实现快速查找的所使用的的HASH算法,能够实现O(1)复杂的快速查找,HASH算法虽然好,但是有一个致命的缺点,就是HASH函数算出的散列值,通常是随机分布,没有顺序性。而很多时候数据库的数据是有数值含义的,需要实现诸如

SELECT * FROM CUSTOMER WHERE ORDER_AMOUT > 100

类似这样的范围查找,这样的需求,哈希算法是无法实现,那我们就需要有一类能够保持关键字段稳定排列的算法或数据结构,这时候我们就需要用到BTREE,B树

 

B树

1970年,R.Bayer和E.mccreight提出了一种适用于外查找的树,它是一种平衡的多叉树,称为B树(或B-树、B_树)。

一棵m阶B树(balanced tree of order m)是一棵平衡的m路搜索树。它或者是空树,或者是满足下列性质的树:

1、根结点至少有两个子女;

2、每个非根节点所包含的关键字个数 j 满足:【m/2】 - 1 <= j <= m - 1;

3、除根结点以外的所有结点(不包括叶子结点)的度数正好是关键字总数加1,故内部子树个数 k 满足:【m/2】 <= k <= m ;

4、所有的叶子结点都位于同一层。

image3.png

 

 

B树的查找

如图所示,B+树中含有两个头指针,一个指向整棵树的根结点,另一个指向关键字最小的叶子结点。同时所有的叶子结点依据其关键字的大小自小而大顺序链接,所有的叶子结点构成了一个 sqt 指针为头指针的链表。

 

所以,B+树可以进行两种查找运算:一种是利用 sqt 链表做顺序查找,另一种是从树的根结点开始,进行类似于二分查找的查找方式。

 

能够使用二分法进行查找,就意味着查找效率接近O(lgN)级别,可以以非常快的速度在大量的数据中进行查找,并且也满足了我们一开始想要实现的还能够进行顺序查找的操作。

 

B树在数据库中的使用

B树在数据库中的使用有

B树索引:为了加快查找速度,我们可以在数据记录的关键字段上建立B树索引,这样的索引既可以进行等值查找,也可以进行范围查找,等值查找的操作速度略逊于HASH

聚集表/索引组织表:为了能够实现数据的快速访问,很多数据库甚至将表按照住建组织成了B树的形式,这样按照主键来查询数据或者范围查找数据是非常快的,比如MySQL InnoDB引擎的表的组织形式就是B树

image33.png

目录
相关文章
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
55 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
140 4
|
2月前
|
算法
数据结构之博弈树搜索(深度优先搜索)
本文介绍了使用深度优先搜索(DFS)算法在二叉树中执行遍历及构建链表的过程。首先定义了二叉树节点`TreeNode`和链表节点`ListNode`的结构体。通过递归函数`dfs`实现了二叉树的深度优先遍历,按预序(根、左、右)输出节点值。接着,通过`buildLinkedList`函数根据DFS遍历的顺序构建了一个单链表,展示了如何将树结构转换为线性结构。最后,讨论了此算法的优点,如实现简单和内存效率高,同时也指出了潜在的内存管理问题,并分析了算法的时间复杂度。
58 0
|
15天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
50 20
|
2月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
1月前
|
存储 缓存 数据库
数据库索引采用B+树不采用B树的原因?
B+树优化了数据存储和查询效率,数据仅存于叶子节点,便于区间查询和遍历,磁盘读写成本低,查询效率稳定,特别适合数据库索引及范围查询。
39 6
|
2月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
74 5
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
67 1
|
2月前
|
存储 缓存 数据库
数据库索引采用B+树不采用B树的原因
B+树相较于B树,在数据存储、磁盘读写、查询效率及范围查询方面更具优势。数据仅存于叶子节点,便于高效遍历和区间查询;内部节点不含数据,提高缓存命中率;查询路径固定,效率稳定;特别适合数据库索引使用。
33 1

热门文章

最新文章