深度学习在崛起,SIGIR在衰退

简介: 深度学习在崛起,SIGIR在衰退

  2013年,深度学习在语音上获得突破;2013年,在计算机视觉上获得突破;2015年,在自然语言理解上获得突破。下一个突破,将是信息检索(IR)。

  点击阅读原文可获取Manning演讲笔记。

  下面是Manning在斯坦福大学关于自然语言理解和深度学习的演讲,可以帮助我们更好地理解他所说的深度学习对自然语言理解的帮助。

  大会另一场主旨演讲 2:Vipin Kumar : 气候大数据下深度学习的机会与挑战

  大量数据变得可用的背景下,探讨机器学习的机遇与挑战。

  此外,本次大会上共接收了62篇完整论文,其中包括谷歌、微软等大型公司的研究。中国有大量论文被接受,其中包括中科院、华为、百度、人民大学、清华大学、电子科技大学、武汉大学、华中师范大学、华东师范大学等研究机构的论文。

  深度学习在崛起,SIGIR在衰退

  SIGIR的主席Charlie Clarke 在卸任的告别信中这样写到:“我们的大会正在衰退。”在圈内,这其实已经是一个共识,不管是在大会的茶歇间隙还是热烈的会前讨论中,人们都会说到这一现象。

  发生了什么?

  现在,有人担心,SIGIR可能不会再吸引那么多的相关的论文。这一种担心基于下面两个观察:

  第一个是,2011年提交SIGIR的论文数量达到峰值543篇,但从那之后,就一直在下降。第二个观察,其他同类会议收到的论文数量依然维持在很高的水平,有一些还出现了增加。

目录
相关文章
|
6月前
|
机器学习/深度学习 运维 监控
深度学习在智能监控领域的革新:图像识别技术的崛起
【4月更文挑战第23天】 随着人工智能技术的飞速发展,深度学习已经成为推动计算机视觉进步的核心技术之一。特别是在智能监控领域,基于深度学习的图像识别技术正逐渐改变着安全监控的传统模式,提升系统的智能化水平。本文将探讨基于深度学习的图像识别技术在智能监控系统中的应用现状与挑战,分析其在目标检测、行为分析以及异常事件识别中的作用,并展望其未来发展趋势。
|
机器学习/深度学习 知识图谱 算法
深度学习之上,图神经网络(GNN )崛起
由于深度学习在可推理和可解释性方面存在比较大的局限性,结合了图计算和深度学习的图神经网络(GNNs)成为近期学术界和工业界研究热度颇高的新方向之一。业界普遍认为,GNN 恰好可以弥补前面提到的深度学习无法解决的两个缺陷。近一年 GNN 在越来越多应用场景上取得了成功,但它也仍面临着许多挑战。
1865 0
深度学习之上,图神经网络(GNN )崛起
|
机器学习/深度学习 人工智能 算法
《中国人工智能学会通讯》——6.23 Yoshua Bengio: 深度学习崛起带来人工智能的春天
本节书摘来自CCAI《中国人工智能学会通讯》一书中的第6章,第6.23节, 更多章节内容可以访问云栖社区“CCAI”公众号查看。
1144 0
|
8天前
|
机器学习/深度学习 算法 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第18天】 本文深入探讨了深度学习在图像识别领域的应用,分析了其技术优势和面临的主要挑战。通过具体案例和数据支持,展示了深度学习如何革新图像识别技术,并指出了未来发展的方向。
105 58
|
3天前
|
机器学习/深度学习 算法 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第22天】 本文深入探讨了深度学习在图像识别领域的应用,分析了其技术原理、优势以及面临的挑战。通过实例展示了深度学习如何推动图像识别技术的发展,并对未来趋势进行了展望。
14 5
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习在图像识别中的应用与挑战
【10月更文挑战第20天】 随着人工智能技术的不断发展,深度学习已经在许多领域展现出强大的应用潜力。本文将探讨深度学习在图像识别领域的应用,以及面临的挑战和可能的解决方案。通过分析现有的研究成果和技术趋势,我们可以更好地理解深度学习在图像识别中的潜力和局限性,为未来的研究和应用提供参考。
25 7
|
1天前
|
机器学习/深度学习 PyTorch TensorFlow
深度学习在图像识别中的革命性应用
本文探讨了深度学习技术在图像识别领域中的应用,重点分析了卷积神经网络(CNN)的工作原理及其对图像处理的影响。通过对比传统图像识别方法和深度学习方法,展示了深度学习如何显著提高了图像识别的准确率和效率。文章还简要介绍了一些著名的深度学习框架,如TensorFlow和PyTorch,并讨论了它们在实际应用中的优势。
|
5天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
深度学习在图像识别中的应用
【10月更文挑战第21天】本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,并展示如何使用Python和TensorFlow库实现一个简单的图像识别模型。通过这个示例,我们将了解深度学习如何帮助计算机“看”世界,并展望其在未来的应用前景。
16 5
|
8天前
|
机器学习/深度学习 数据安全/隐私保护 计算机视觉
深度学习在图像识别中的应用与挑战
本文探讨了深度学习在图像识别领域的应用,并分析了其面临的主要挑战。通过介绍卷积神经网络(CNN)的基本原理和结构,本文阐述了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了深度学习模型在处理大规模数据集时遇到的过拟合问题、计算资源需求以及数据隐私保护等挑战。通过对比传统图像识别方法和深度学习方法的优缺点,本文旨在为读者提供一个全面的视角,了解深度学习在图像识别领域的潜力和局限性。
|
5天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。

热门文章

最新文章