医疗 AI 未来值得关注的三个趋势

简介: 无代码工具和日益增长的文本实用性表明,随着 AI 复杂性地不断提高,安全问题依然存在。

在新冠疫情爆发、心理健康危机、医疗成本上升和人口老龄化之间,行业领导者正急于开发针对医疗保健专用的人工智能 (AI) 应用程序。一个信号来自风险投资市场:超过 40 家初创公司筹集了大量资金(2000 万美元或更多),为该行业构建人工智能解决方案。但是人工智能实际上是如何应用于医疗保健领域的呢?

“2022 年医疗行业 AI 调查”询问了来自全球各地 300 多名受访者,以更好地了解定义医疗行业 AI 面临的挑战、取得的成就和应用案例。在第二年,结果没有显著变化,但它们确实呈现出一些有趣的趋势,预示着未来几年将如何发展。虽然这种演变在某些方面是积极的(人工智能的民主化),但其他方面却不那么令人兴奋(更大的攻击面)。以下是企业需要了解的三个趋势:

1.利用无代码工具实现人工智能的易用性和民主化
Gartner 估计,到 2025 年,企业开发的 70% 的新应用程序将使用无代码或低代码技术(高于 2020 年的不到 25%)。虽然低代码能够简化程序员的工作量,但无需数据科学干预的无代码解决方案对企业及其他领域产生的影响才是最大的。这就是为什么,当看到人工智能的使用从技术职称到领域专家的飞跃转变是令人兴奋的。

对于医疗保健来说,这意味着在人工智能在医疗保健调查中,超过一半 (61%) 的受访者认为,临床医生是他们的目标用户,其次是医疗保健支付者 (45%) 和医疗健康 IT 公司 (38%)。这一点,再加上在医疗保健特定人工智能应用方面的重大发展和投资,以及开源技术的可用性,表明了更广泛的行业应用。

这一点意义重大:将代码就像 Excel 或 Photoshop 等常用办公工具一样交到医护人员手中,将使AI得到更好的改善。除了使技术更易于使用之外,它还可以实现更准确和可靠的结果,因为可以由医学专业人员(非软件专业人员)掌管。这些变化不会在一夜之间发生,但人工智能增长的核心用户是领域专家,无疑是向前迈进的一大步。

2.工具日趋完善,文本越来越实用
其他令人鼓舞的发现,涉及人工智能工具的进步以及用户深入研究特定模型的愿望。当被问及他们计划在 2022 年底之前采用哪些技术时,调查中的技术领导者提到了数据集成 (46%)、商业智能 (44%)、NLP (43%) 和数据注释 (38%)。文本现在是人工智能应用程序中最有可能使用的数据类型,对自然语言处理 (NLP) 和数据注释的重视表明,更复杂的人工智能技术正在兴起。

这些工具能够支持临床决策、药物发现和医疗政策评估等重要活动。在经历了两年的新冠疫情之后,随着开发新疫苗并发现如何在大规模事件发生后,更好地支持医疗保健系统的需求等等,这些领域的进展的重要性是显而易见的。通过这些例子我们也可以看出,医疗行业对人工智能的使用与其他行业有很大不同,需要采用不同的方法。

因此,成熟企业的技术领导者和受访者都将医疗行业特定的模型和算法的可用性,作为评估本地安装的软件库或 SaaS 解决方案最重要的要求,这不足为奇。从风险投资情况、市场上现有的库以及人工智能用户的需求来看,医疗保健的特定模型只会在未来几年内日益增长。

3.安全和安全问题日益严重
随着人工智能在过去一年中取得的所有进展,它也开辟了一系列新的攻击载体。当被问及受访者使用哪些类型的软件来构建他们的 AI 应用程序时,最受欢迎的选择是本地安装的商业软件 (37%) 和开源软件 (35%)。最值得注意的是,与去年的调查相比,云服务的使用下降了 12% (30%),这很可能是由于对数据共享的隐私问题。

此外,大多数受访者 (53%) 选择依靠自己的数据来验证模型,而不是依靠第三方或软件供应商的指标。来自成熟企业的受访者 (68%) 表示,他们明显倾向于使用内部评估和自行调整模型。同样,由于医疗数据处理方面的严格控制和程序,很明显人工智能用户希望尽可能在内部进行操作。

但无论怎样的软件偏好或用户如何验证模型,不断升级的医疗保健安全威胁都可能产生重大影响。当其他关键基础设施服务面临挑战时,医疗保健的违规影响超出了声誉和财务损失。数据丢失或篡改医院设备可能就是生死之别。

随着开发人员和投资者努力将技术掌握在日常用户手中,人工智能有望实现更显着的增长。但是,随着人工智能变得更加广泛可用,以及模型和工具的改进,安全、保障和道德将成为需要重点关注的焦点。看看今年这些医疗领域的人工智能如何发展,以及它对行业的未来意味着什么,这将会很有趣。


本文转载自51CTO,本文一切观点和机器智能技术圈子无关。原文链接
免费体验百种AI能力以及试用热门离线SDK:【点此跳转】

相关文章
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
29 1
|
16天前
|
人工智能 搜索推荐 安全
AI技术在医疗领域的应用与挑战
【10月更文挑战第27天】 本文探讨了人工智能(AI)在医疗领域的应用,包括疾病诊断、药物研发和患者管理等方面。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题和技术局限性等。通过对这些方面的深入分析,我们可以更好地理解AI在医疗领域的潜力和发展方向。
119 59
|
7天前
|
机器学习/深度学习 人工智能 算法
AI在医疗领域的应用与挑战
本文探讨了人工智能(AI)在医疗领域的应用,包括其在疾病诊断、治疗方案制定、患者管理等方面的优势和潜力。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题以及技术局限性等。通过对这些内容的深入分析,旨在为读者提供一个全面了解AI在医疗领域现状和未来发展的视角。
36 10
|
8天前
|
机器学习/深度学习 人工智能 监控
探索AI在医疗领域的应用与挑战
本文深入探讨了人工智能(AI)在医疗领域中的应用现状和面临的挑战。通过分析AI技术如何助力疾病诊断、治疗方案优化、患者管理等方面的创新实践,揭示了AI技术为医疗行业带来的变革潜力。同时,文章也指出了数据隐私、算法透明度、跨学科合作等关键问题,并对未来的发展趋势进行了展望。
|
9天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用及其未来趋势
【10月更文挑战第34天】随着人工智能技术的飞速发展,其在医疗领域的应用也日益广泛。本文将探讨AI技术在医疗诊断中的具体应用案例,分析其对提升诊断效率和准确性的积极影响,并预测未来AI在医疗诊断中的发展趋势。通过实际代码示例,我们将深入了解AI如何帮助医生进行更精准的诊断。
|
11天前
|
机器学习/深度学习 人工智能 搜索推荐
探索AI在医疗诊断中的革命性应用
【10月更文挑战第29天】 随着人工智能技术的飞速发展,其在医疗领域的应用已成为推动现代医疗服务创新的重要力量。本文旨在探讨AI技术如何在医疗诊断中发挥其独特优势,通过分析AI在影像诊断、疾病预测和个性化治疗计划制定等方面的应用案例,揭示AI技术如何提高诊断的准确性和效率,以及面临的挑战和未来发展趋势。
32 1
|
12天前
|
人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第31天】本文将探讨AI技术在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念开始,然后详细介绍其在医疗领域的应用,包括疾病诊断、药物研发、患者护理等方面。最后,我们将讨论AI技术在医疗领域面临的挑战,如数据隐私、算法偏见等问题。
|
17天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在医疗领域的革命:智能诊断系统的未来
在科技日新月异的今天,人工智能(AI)技术正逐渐渗透到我们生活的每一个角落,其中医疗领域尤为显著。本文将探讨AI在医疗诊断中的应用及其带来的变革,重点介绍智能诊断系统的发展现状与未来趋势。通过深入浅出的方式,我们将揭示AI如何改变传统医疗模式,提高诊断效率和准确性,最终造福广大患者。
|
17天前
|
机器学习/深度学习 人工智能 算法
AI在医疗:深度学习在医学影像诊断中的最新进展
【10月更文挑战第27天】本文探讨了深度学习技术在医学影像诊断中的最新进展,特别是在卷积神经网络(CNN)的应用。文章介绍了深度学习在识别肿瘤、病变等方面的优势,并提供了一个简单的Python代码示例,展示如何准备医学影像数据集。同时强调了数据隐私和伦理的重要性,展望了AI在医疗领域的未来前景。
38 2
|
11天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗领域的应用及其挑战
【10月更文挑战第33天】随着人工智能技术的不断发展,其在医疗领域的应用也越来越广泛。从辅助诊断到治疗方案的制定,AI技术都发挥着重要作用。然而,随之而来的挑战也不容忽视,如数据隐私保护、算法的透明度和可解释性等问题。本文将探讨AI技术在医疗领域的应用及其面临的挑战。
22 0

热门文章

最新文章