没人告诉过你更复杂的缓存穿透怎么解决

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 你应该从网上看过太多的文章说缓存穿透怎么解决?无非就是布隆过滤器,缓存空值什么的。但是,更深入的一个问题,缓存空值有没有问题?如果缓存的空值太多怎么办?如果用的redis,那么太多的空值会不会打爆你的redis?如果用的本地缓存,会不会打爆你的内存?继而引发的问题就是还是会打爆你的数据库。

从线上问题说起

前不久,我们线上环境压测,在QPS压倒2W之后RT达到了几十秒,排查后发现是redis的连接数不够导致大量的连接超时。

经过考虑之后,我们最终决定弃用redis缓存的方案,改为本地缓存,因为我们缓存的都是一些配置信息,实际上几个月都不太可能修改,而redis配置的连接数是200,5分钟超时,数据量实际上也就只有几千条而已,实际上来说并没有很大的必要,本地缓存完全就可以解决问题了。

本地缓存使用Guava的LoadingCache实现。

de3f4ff8a062e92ba6c030dc78ac53d2.jpg

但是修改完之后,压测之后还是发现有接口全部走到数据库查询,先排查代码,是否是代码的BUG导致实际没有生效,后来发现实际上发生了缓存穿透,压测使用了一些数据库中不存在的记录,导致了穿透的问题,实际上这个问题在使用redis的时候也一直存在,只是由于连接数的问题一直没有发现而已。

接下来就是考虑怎么解决的问题?

由于我们都是缓存的一些配置信息,几千条数据而已,最终考虑简单解决的办法。直接把所有的key全部从数据库查出来缓存下来,查数据库之前直接根据key过滤一把,如果不存在就直接返回,不要走数据库查询了。

当然,这是由于我们的场景比较简单,这样直接处理就行了,那么,如果再复杂一点,比如上亿的缓存数据呢?

解决方案

前置过滤

如果说类似我这种比较简单的一些缓存,使用我上面说的解决方案也可以,还有一些缓存的key是比如ID之类,也可以根据一定的范围规则去提前过滤,比如缓存的key明确知道在1-10万的范围之后,那么过滤掉在这个范围之外的请求直接返回就可以了。

当然,很明显这种简单的规则过滤适用于数据量不是很大,并且数据不会频繁发生改变的情况。

布隆过滤器

对于上述场景,因为数据量很小,简单的代码实现缓存即可,如果说数据量很大的话,比如有一亿个key,使用布隆过滤器就是个更优解。

我们可以每天定时把所有的配置信息从数据库中查询出来构建成bitmap。

关于布隆过滤器我前面的文章也有写过,贴上之前的图一张,如果查询的位置都是1的话说明key存在,反之只要有一个0则说明肯定不存在。

使用布隆过滤器的缺点也很明显,存在一定概率的误判。当然,既然用了,对于误判比例、内存占用等等问题应该事先评估好。


1589e43f6d1a1a74e774fd09b3dbdb28.jpg

缓存空值

这个是网上说烂的问题,但是缓存空值的空值太多明显也是有问题的,再进一步解决方案就是快速过期。

一般来说,普通的缓存的写法如下,先查缓存,如果缓存存在则直接返回,如果缓存没有则去数据库查询,结果不是空就保存到缓存中。

beabeab8853b376fa19d701651742945.jpg

改进版的写法就是缓存空对象,针对空的数据,设置过期时间,比如10分钟,快速过期,防止太多的空值问题。

73b879b298351d0f55ee1f485f6a19ee.jpg

但是这个解决方案仍然有点小问题,就是短暂的数据不一致的问题。

想象一下如果缓存的空值这时候实际上已经有值了,那么在过期时间的这段时间内就可能存在短暂的数据不一致。

总结

缓存穿透的问题总结下来就是三点,这三个方式不是说是隔离的解决方案,他们可以结合在一起使用。

首先看数据量,如果数据量很小并且没有频繁变更的话,选择前置过滤的方式,根据具体的业务规则来处理就可以。

如果数据量大的话,可以选择使用布隆过滤器,但是存在一定概率的误判。

通过前置的拦截,应该拦截住大部分的流量,避免直接打爆数据库。

最后,可以使用缓存空值并且设置快速过期的方式来作为一个兜底的方案。

如果还有问题,那么就是限流、降级了。

相关文章
|
3月前
|
缓存 数据库连接 数据库
缓存三剑客(穿透、击穿、雪崩)
缓存穿透指查询数据库和缓存中都不存在的数据,导致请求直接冲击数据库。解决方案包括缓存空对象和布隆过滤器。缓存击穿是大量请求访问同一个失效的热点数据,使数据库瞬间压力剧增,解决方法有提前预热、设置永不过期、加锁限流等。缓存雪崩是大量key同时失效,导致所有请求直达数据库,可通过引入随机过期时间缓解。三者分别对应单点爆破、全面崩塌等问题,需根据场景选择合适策略优化系统性能与稳定性。
242 0
|
3月前
|
缓存 数据库
如何解决缓存穿透?
对请求增加校验机制,如ID格式和位数校验,避免无效请求;缓存空值或特殊值防止缓存穿透;使用布隆过滤器拦截不存在的请求,减轻数据库压力。
46 0
|
12月前
|
存储 缓存 监控
缓存击穿、缓存穿透、缓存雪崩 3大问题,如何彻底解决?
【10月更文挑战第8天】在分布式系统中,缓存的使用极大地提高了系统的性能和响应速度。然而,缓存击穿、缓存穿透和缓存雪崩是三个常见的缓存相关问题,它们可能导致系统性能下降,甚至引发系统崩溃。本文将深入探讨这三个问题的成因、影响以及彻底的解决方案。
1438 1
|
7月前
|
缓存 监控 NoSQL
Redis--缓存击穿、缓存穿透、缓存雪崩
缓存击穿、缓存穿透和缓存雪崩是Redis使用过程中可能遇到的常见问题。理解这些问题的成因并采取相应的解决措施,可以有效提升系统的稳定性和性能。在实际应用中,应根据具体场景,选择合适的解决方案,并持续监控和优化缓存策略,以应对不断变化的业务需求。
1372 29
|
缓存 NoSQL 关系型数据库
redis和缓存及相关问题和解决办法 什么是缓存预热、缓存穿透、缓存雪崩、缓存击穿
本文深入探讨了Redis缓存的相关知识,包括缓存的概念、使用场景、可能出现的问题(缓存预热、缓存穿透、缓存雪崩、缓存击穿)及其解决方案。
697 0
redis和缓存及相关问题和解决办法 什么是缓存预热、缓存穿透、缓存雪崩、缓存击穿
|
缓存 NoSQL Java
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
这篇文章是关于如何在SpringBoot应用中整合Redis并处理分布式场景下的缓存问题,包括缓存穿透、缓存雪崩和缓存击穿。文章详细讨论了在分布式情况下如何添加分布式锁来解决缓存击穿问题,提供了加锁和解锁的实现过程,并展示了使用JMeter进行压力测试来验证锁机制有效性的方法。
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
|
7月前
|
缓存 数据库
什么是缓存穿透 ? 怎么解决 ?
缓存穿透是指查询一条数据库和缓存都没有的一条数据,就会一直查询数据库,对数据库的访问压力就会增大,缓存穿透的解决方案 有以下2种解决方案 : ● 缓存空对象:代码维护较简单,但是效果不好。 ● 布隆过滤器:代码维护复杂,效果很好
|
11月前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
10月前
|
缓存 监控 NoSQL
Redis经典问题:缓存穿透
本文详细探讨了分布式系统和缓存应用中的经典问题——缓存穿透。缓存穿透是指用户请求的数据在缓存和数据库中都不存在,导致大量请求直接落到数据库上,可能引发数据库崩溃或性能下降。文章介绍了几种有效的解决方案,包括接口层增加校验、缓存空值、使用布隆过滤器、优化数据库查询以及加强监控报警机制。通过这些方法,可以有效缓解缓存穿透对系统的影响,提升系统的稳定性和性能。
|
11月前
|
缓存 NoSQL 数据库
缓存穿透、缓存击穿和缓存雪崩及其解决方案
在现代应用中,缓存是提升性能的关键技术之一。然而,缓存系统也可能遇到一系列问题,如缓存穿透、缓存击穿和缓存雪崩。这些问题可能导致数据库压力过大,甚至系统崩溃。本文将探讨这些问题及其解决方案。