机器学习入门实践——鸢尾花分类

简介: 机器学习入门实践——鸢尾花分类

原数据地址:


https://aistudio.baidu.com/aistudio/projectdetail/1096669


任务描述:


构建一个模型,根据鸢尾花的花萼和花瓣大小将其分为三种不同的品种。



数据集


总共包含150行数据


每一行数据由 4 个特征值及一个目标值组成。


4 个特征值分别为:萼片长度、萼片宽度、花瓣长度、花瓣宽度


目标值为三种不同类别的鸢尾花,分别为: Iris Setosa、Iris Versicolour、Iris Virginica



首先导入必要的包:


numpy:python第三方库,用于科学计算


matplotlib:python第三方库,主要用于进行可视化


sklearn:python的重要机器学习库,其中封装了大量的机器学习算法,如:分类、回归、降维以及聚类


import numpy as np                
from matplotlib import colors     
from sklearn import svm            
from sklearn.svm import SVC
from sklearn import model_selection
import matplotlib.pyplot as plt
import matplotlib as mpl


Step1.数据准备


(1)从指定路径下加载数据


(2)对加载的数据进行数据分割,x_train,x_test,y_train,y_test分别表示训练集特征、训练集标签、测试集特征、测试集标签


#*************将字符串转为整型,便于数据加载***********************
def iris_type(s):
    it = {b'Iris-setosa':0, b'Iris-versicolor':1, b'Iris-virginica':2}
    return it[s]
#加载数据
data_path='/home/aistudio/data/data5420/iris.data'          #数据文件的路径
data = np.loadtxt(data_path,                                #数据文件路径
                  dtype=float,                              #数据类型
                  delimiter=',',                            #数据分隔符
                  converters={4:iris_type})                 #将第5列使用函数iris_type进行转换
#print(data)                                                 #data为二维数组,data.shape=(150, 5)
#print(data.shape)
#数据分割
x, y = np.split(data,                                       #要切分的数组
                (4,),                                       #沿轴切分的位置,第5列开始往后为y
                axis=1)                                     #代表纵向分割,按列分割
x = x[:, 0:2]                                               #在X中我们取前两列作为特征,为了后面的可视化。x[:,0:4]代表第一维(行)全取,第二维(列)取0~2
#print(x)
x_train,x_test,y_train,y_test=model_selection.train_test_split(x,              #所要划分的样本特征集
                                                               y,              #所要划分的样本结果
                                                               random_state=1, #随机数种子
                                                               test_size=0.3)  #测试样本占比


Step2.模型搭建


C越大,相当于惩罚松弛变量,希望松弛变量接近0,即对误分类的惩罚增大,趋向于对训练集全分对的情况,这样对训练集测试时准确率很高,但泛化能力弱。


C值小,对误分类的惩罚减小,允许容错,将他们当成噪声点,泛化能力较强。


kernel='linear’时,为线性核


decision_function_shape='ovr’时,为one v rest,即一个类别与其他类别进行划分,


decision_function_shape='ovo’时,为one v one,即将类别两两之间进行划分,用二分类的方法模拟多分类的结果。


#**********************SVM分类器构建*************************
def classifier():
    #clf = svm.SVC(C=0.8,kernel='rbf', gamma=50,decision_function_shape='ovr')
    clf = svm.SVC(C=0.5,                         #误差项惩罚系数,默认值是1
                  kernel='linear',               #线性核 kenrel="rbf":高斯核
                  decision_function_shape='ovr') #决策函数
    return clf
# 2.定义模型:SVM模型定义
clf = classifier()


Step3.模型训练


#***********************训练模型*****************************
def train(clf,x_train,y_train):
    clf.fit(x_train,         #训练集特征向量
            y_train.ravel()) #训练集目标值
#***********************训练模型*****************************
def train(clf,x_train,y_train):
    clf.fit(x_train,         #训练集特征向量
            y_train.ravel()) #训练集目标值
# 3.训练SVM模型
train(clf,x_train,y_train)


Step4.模型评估


#**************并判断a b是否相等,计算acc的均值*************
def show_accuracy(a, b, tip):
    acc = a.ravel() == b.ravel()
    print('%s Accuracy:%.3f' %(tip, np.mean(acc)))
def print_accuracy(clf,x_train,y_train,x_test,y_test):
    #分别打印训练集和测试集的准确率  score(x_train,y_train):表示输出x_train,y_train在模型上的准确率
    print('trianing prediction:%.3f' %(clf.score(x_train, y_train)))
    print('test data prediction:%.3f' %(clf.score(x_test, y_test)))
    #原始结果与预测结果进行对比   predict()表示对x_train样本进行预测,返回样本类别
    show_accuracy(clf.predict(x_train), y_train, 'traing data')
    show_accuracy(clf.predict(x_test), y_test, 'testing data')
    #计算决策函数的值,表示x到各分割平面的距离
    print('decision_function:\n', clf.decision_function(x_train))
# 4.模型评估
print_accuracy(clf,x_train,y_train,x_test,y_test)


Step5.模型使用


def draw(clf, x):
    iris_feature = 'sepal length', 'sepal width', 'petal lenght', 'petal width'
    # 开始画图
    x1_min, x1_max = x[:, 0].min(), x[:, 0].max()               #第0列的范围
    x2_min, x2_max = x[:, 1].min(), x[:, 1].max()               #第1列的范围
    x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j]   #生成网格采样点
    grid_test = np.stack((x1.flat, x2.flat), axis=1)            #stack():沿着新的轴加入一系列数组
    print('grid_test:\n', grid_test)
    # 输出样本到决策面的距离
    z = clf.decision_function(grid_test)
    print('the distance to decision plane:\n', z)
    grid_hat = clf.predict(grid_test)                           # 预测分类值 得到【0,0.。。。2,2,2】
    print('grid_hat:\n', grid_hat)  
    grid_hat = grid_hat.reshape(x1.shape)                       # reshape grid_hat和x1形状一致
                                                                #若3*3矩阵e,则e.shape()为3*3,表示3行3列   
    cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
    cm_dark = mpl.colors.ListedColormap(['g', 'b', 'r'])
    plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light)                                   # pcolormesh(x,y,z,cmap)这里参数代入
                                                                                      # x1,x2,grid_hat,cmap=cm_light绘制的是背景。
    plt.scatter(x[:, 0], x[:, 1], c=np.squeeze(y), edgecolor='k', s=50, cmap=cm_dark) # 样本点
    plt.scatter(x_test[:, 0], x_test[:, 1], s=120, facecolor='none', zorder=10)       # 测试点
    plt.xlabel(iris_feature[0], fontsize=20)
    plt.ylabel(iris_feature[1], fontsize=20)
    plt.xlim(x1_min, x1_max)
    plt.ylim(x2_min, x2_max)
    plt.title('svm in iris data classification', fontsize=50)
    plt.grid()
    plt.show()


相关文章
|
1月前
|
机器学习/深度学习 数据采集 算法
深入了解机器学习:从入门到应用
【10月更文挑战第6天】深入了解机器学习:从入门到应用
|
14天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
31 2
|
15天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到实践
【10月更文挑战第35天】在这篇文章中,我们将深入探讨机器学习的世界。我们将从基础理论开始,然后逐步过渡到实际应用,最后通过代码示例来展示如何实现一个简单的机器学习模型。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息和见解。
|
16天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
40 1
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
36 2
|
27天前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
机器学习基础:使用Python和Scikit-learn入门
30 1
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第12天】本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和入门实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型训练和评估等步骤,并提供了代码示例。通过本文,读者可以掌握机器学习的基本流程,并为深入学习打下坚实基础。
23 1
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习基础:使用Python和Scikit-learn入门
本文介绍了如何使用Python和Scikit-learn进行机器学习的基础知识和实践。首先概述了机器学习的基本概念,包括监督学习、无监督学习和强化学习。接着详细讲解了Python和Scikit-learn的安装、数据处理、模型选择与训练、模型评估及交叉验证等关键步骤。通过本文,初学者可以快速上手并掌握机器学习的基本技能。
55 2
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
机器学习中空间和时间自相关的分析:从理论基础到实践应用
空间和时间自相关是数据分析中的重要概念,揭示了现象在空间和时间维度上的相互依赖关系。本文探讨了这些概念的理论基础,并通过野火风险预测的实际案例,展示了如何利用随机森林模型捕捉时空依赖性,提高预测准确性。
64 0
机器学习中空间和时间自相关的分析:从理论基础到实践应用
|
1月前
|
机器学习/深度学习 人工智能 数据挖掘
机器学习基础:使用Python和Scikit-learn入门
【10月更文挑战第6天】在人工智能领域,机器学习已成为核心技术。本文指导初学者使用Python与Scikit-learn入门机器学习,涵盖基本概念、环境搭建、数据处理、模型训练及评估等环节。Python因简洁性及其生态系统成为首选语言,而Scikit-learn则提供了丰富工具,简化数据挖掘与分析流程。通过实践示例,帮助读者快速掌握基础知识,为进一步深入研究奠定坚实基础。
28 4

热门文章

最新文章

下一篇
无影云桌面