机器学习之卷积神经网络--CNN介绍

简介: 机器学习之卷积神经网络--CNN介绍

卷积神经网络--CNN

1. 卷积神经网络介绍

卷积神经网络(Convolutional Neural Networks,CNN)是一种包
含卷积计算且具有深度结构的前馈神经网络,是深度学习的代表算法之一。
常见的CNN网络有LeNet-5、VGGNet、GoogleNet、ResNet、
DenseNet、MobileNet等。
CNN主要应用场景: 图像分类、图像分割 、 目标检测 、 自然语言处
理等领域。

2. 卷积神经网络基本结构及原理

卷积神经网络基本结构

在这里插入图片描述

CNN基本结构:INPUT -> 卷积->激活 -> 池化 -> 全连接 ->OUTPUT

卷积层

对输入的图像数据与卷积核做卷积运算提取图像的高阶特征
卷积过程的几个参数
1、深度(depth):卷积核个数,也称神经元个数,决定输出的特征图的数量。
在这里插入图片描述

2、步长(stride):卷积核滑动一次的大小,决定滑动多少步可以到达边缘。
在这里插入图片描述
在这里插入图片描述

3、填充值(padding):在外围边缘补充0的层数。

卷积过程

在这里插入图片描述

卷积网络最主要的两个特征
1、局部感知
2、权值共享
激活层、Relu函数

池化层

下采样(downsamples),对输入的特征图进行压缩;
一方面使特征图变小,简化网络计算复杂度,有效控制过拟合;
另一方面进行特征压缩,提取主要特征。
池化,规模一般为 2*2,操作一般有2种:

  • 最大池化(Max Pooling)。取4个点的最大值。这是最常用的池化方法。
  • 均值池化(Mean Pooling)。取4个点的均值。
  • 在这里插入图片描述

全连接层

连接所有的特征,将输出值送给分类器,实现分类。
在这里插入图片描述

3. pytorch中卷积的实现

卷积层

torch.nn.Conv2d()
参数说明
in_channels:输入通道数(深度)
out_channels:输出通道数(深度)
kernel_size:滤波器(卷积核)大小
stride:表示滤波器滑动的步长
padding:是否进行零填充
bias:默认为 True,表示使用偏置
groups:控制分组卷积,默认不分组,为1组。
dilation:卷积对输入的空间间隔,默认为 True

激活层

torch.nn.ReLU()
参数说明
inplace:是否在原数据进行操作,默认是False

池化层

torch.nn.MaxPool2d()
torch.nn.AvgPool2d()
参数说明
kernel_size :表示做最大池化的窗口大小
stride:步长
padding:是否进行零填充
dilation:卷积对输入的空间间隔,默认为 True

全连接层

torch.nn.Linear()
参数说明
in_features :输入特征数;
out_features:输出特征数;
bias:默认为 True,表示使用偏置

4. 经典卷积神经网络介绍

Lenet-5

LeNet5卷积神经网络源于Yann LeCun在1998年发表的论文:Gradient-
based Learning Applied to Document Recognition,是一种用于手写数字识别的
卷积神经网络。
LeNet-5是CNN网络架构中最知名的网络模型,是卷积神经网络的开山之
作。

AlexNet

2012 年, AlexNet 横空出世。AlexNet 使⽤卷积神经⽹络,并以很⼤的优
势赢得了ImageNet 2012 图像识别挑战赛冠军。
Alexnet模型由5个卷积层和3个池化Pooling 层 ,其中还有3个全连接层构
成。AlexNet 跟 LeNet 结构类似,但使⽤了更多的卷积层和更⼤的参数空间来拟
合⼤规模数据集 ImageNet。它是浅层神经⽹络和深度神经⽹络的分界线。

cifar10数据介绍

CIFAR-10 是由 Hinton 的学生 Alex Krizhevsky 和 Ilya Sutskever 整理的一
个用于识别普适物体的小型数据集。一共包含 10 个类别的 RGB 彩色图 片:飞
机( a叩lane )、汽车( automobile )、鸟类( bird )、猫( cat )、鹿
( deer )、狗( dog )、蛙类( frog )、马( horse )、船( ship )和卡车
( truck )。图片的尺寸为 32×32 ,数据集中一共有 50000 张训练圄片和
10000 张测试图片在这里插入图片描述

VGGNet

VGGNet 是由牛津大学视觉几何小组(Visual Geometry Group, VGG)提
出的一种深层卷积网络结构,他们以 7.32% 的错误率赢得了 2014 年 ILSVRC 分
类任务的亚军。
VGGNet探索了卷积神经网络的深度与其性能之间的关系,成功地构筑了
16~19层深的卷积神经网络,证明了增加网络的深度能够在一定程度上影响网络
最终的性能,使错误率大幅下降,同时拓展性又很强,迁移到其它图片数据上的
泛化性也非常好。到目前为止,VGG仍然被用来提取图像特征。
VGG可以看成是加深版本的AlexNet。都是conv layer + FC layer

GoogleNet

GoogleNet是2014年Google团队提出的一种全新的深度学习结构,赢得了
2014 年 ILSVRC 分类任务的冠军。
GoogLeNet是第一个使用并行网络结构的经典模型,这在深度学习的发展
历程中是具有开创性意义的。
GoogLeNet最基本的网络块是Inception,它是一个并联网络块,经过不断
的迭代优化,发展出了Inception-v1、Inception-v2、Inception-v3、Inception-v4、
Inception-ResNet共5个版本。
Inception家族的迭代逻辑是通过结构优化来提升模型泛化能力、降低模型
参数。

ResNet

ResNet(残差网络) 网络是在 2015年 由微软实验室中的何凯明等几位大神
提出,斩获当年ImageNet竞赛中分类任务第一名,目标检测第一名。获得COCO
数据集中目标检测第一名,图像分割第一名。
它使用了一种连接方式叫做“shortcut connection”,顾名思义,shortcut就
是“抄近道”的意思。在这里插入图片描述
ResNet block有两种,一种两层结构,一种三层结构在这里插入图片描述

MobileNet

MobileNet是谷歌在2017年提出,专注于移动端或者嵌入式设备中的轻量
级CNN网络。
MobileNet的基本单元是深度可分离卷积,其可以分解为两个更小的操作:
depthwise convolution和pointwise convolution。

目录
相关文章
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其应用
【9月更文挑战第24天】本文将深入探讨深度学习中的一种重要模型——卷积神经网络(CNN)。我们将通过简单的代码示例,了解CNN的工作原理和应用场景。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息。
29 1
|
1天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【9月更文挑战第31天】本文旨在通过浅显易懂的语言和直观的比喻,为初学者揭开深度学习中卷积神经网络(CNN)的神秘面纱。我们将从CNN的基本原理出发,逐步深入到其在图像识别领域的实际应用,并通过一个简单的代码示例,展示如何利用CNN进行图像分类。无论你是编程新手还是深度学习的初学者,这篇文章都将为你打开一扇通往人工智能世界的大门。
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)入门与实践
【8月更文挑战第62天】本文以浅显易懂的方式介绍了深度学习领域中的核心技术之一——卷积神经网络(CNN)。文章通过生动的比喻和直观的图示,逐步揭示了CNN的工作原理和应用场景。同时,结合具体的代码示例,引导读者从零开始构建一个简单的CNN模型,实现对图像数据的分类任务。无论你是深度学习的初学者还是希望巩固理解的开发者,这篇文章都将为你打开一扇通往深度学习世界的大门。
|
12天前
|
机器学习/深度学习 安全 网络安全
利用机器学习优化网络安全威胁检测
【9月更文挑战第20天】在数字时代,网络安全成为企业和个人面临的重大挑战。传统的安全措施往往无法有效应对日益复杂的网络攻击手段。本文将探讨如何通过机器学习技术来提升威胁检测的效率和准确性,旨在为读者提供一种创新的视角,以理解和实施机器学习在网络安全中的应用,从而更好地保护数据和系统免受侵害。
|
13天前
|
机器学习/深度学习 自动驾驶 TensorFlow
深入理解卷积神经网络(CNN)在图像识别中的应用
【9月更文挑战第20天】本文旨在通过直观的解释和代码示例,向初学者介绍卷积神经网络(CNN)的基本概念及其在图像识别领域的应用。文章将首先解释什么是CNN以及它如何工作,然后通过一个简单的Python代码示例展示如何构建一个基本的CNN模型。最后,我们将讨论CNN在现实世界问题中的潜在应用,并探讨其面临的挑战和发展方向。
32 2
|
13天前
|
机器学习/深度学习 人工智能 算法
深入浅出卷积神经网络(CNN)
【9月更文挑战第20天】在人工智能的璀璨星河中,卷积神经网络(CNN)如同一颗耀眼的星辰,以其独特的魅力照亮了图像处理的天空。本文将带你遨游CNN的宇宙,从其诞生之初的微弱光芒,到成为深度学习领域的超级巨星,我们将一同探索它的结构奥秘、工作原理以及在实际场景中的惊艳应用。你将发现,CNN不仅仅是一段段代码和算法的堆砌,它更是一种让机器“看”懂世界的强大工具。让我们扣好安全带,一起深入CNN的世界,体验技术与创新交织的精彩旅程。
|
4天前
|
存储 安全 网络安全
云计算与网络安全:技术融合下的信息安全新挑战
【9月更文挑战第29天】在数字化浪潮的推动下,云计算服务如雨后春笋般涌现,为各行各业提供了前所未有的便利和效率。然而,随着数据和服务的云端化,网络安全问题也日益凸显,成为制约云计算发展的关键因素之一。本文将从技术角度出发,探讨云计算环境下网络安全的重要性,分析云服务中存在的安全风险,并提出相应的防护措施。我们将通过实际案例,揭示如何在享受云计算带来的便捷的同时,确保数据的安全性和完整性。
|
4天前
|
SQL 安全 算法
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【9月更文挑战第29天】随着互联网的普及,网络安全问题日益严重。本文将介绍网络安全漏洞、加密技术以及安全意识等方面的内容,帮助读者了解网络安全的重要性,提高自身的网络安全意识。
|
4天前
|
存储 SQL 安全
网络安全与信息安全:构建安全防线的关键策略
本文深入探讨了网络安全与信息安全领域的核心要素,包括网络安全漏洞、加密技术以及安全意识的重要性。通过对这些关键领域的分析,旨在为读者提供一套综合性的防护策略,帮助企业和个人在日益复杂的网络环境中保障数据安全。
14 4
|
3天前
|
SQL 安全 程序员
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
【9月更文挑战第30天】在数字化时代,网络安全和信息安全已成为全球关注的焦点。本文将探讨网络安全漏洞、加密技术以及提升安全意识的重要性。我们将通过代码示例,深入理解网络安全的基础知识,包括常见的网络攻击手段、防御策略和加密技术的实际应用。同时,我们还将讨论如何提高个人和企业的安全意识,以应对日益复杂的网络安全威胁。

热门文章

最新文章

下一篇
无影云桌面