机器学习之使用聚类算法对图像进行压缩

简介: 机器学习之使用聚类算法对图像进行压缩

聚类算法案例

聚类算法

聚类算法(Clustering),是对大量未知标注的数据集,按数据的内
在相似性,将数据集划分为多个互不相交的子集,每个子集称为一个簇,
使簇内数据的相似度较大而簇间数据的相似度较小。
聚类算法属于无监督机器学习,只有数据x,没有标签y。
常见的聚类算法:k-Means、 spectral clustering、mean-shift等。

from sklearn.cluster import KMeans,MiniBatchKMeans
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt
from sklearn.metrics import silhouette_score,calinski_harabasz_score,davies_bouldin_score

X,_ = make_blobs(n_samples=1000)
plt.scatter(X[:,0],X[:,1],marker='o')
plt.show()
km = KMeans(n_clusters=3)
km.fit(X)

x_pred = km.predict(X)
plt.scatter(X[:,0],X[:,1],c=x_pred)
plt.show()

si = silhouette_score(X,km.predict(X))
ca = calinski_harabasz_score(X,km.predict(X))
dv = davies_bouldin_score(X,km.predict(X))

print("轮廓系数为:",si)
print("calinski_harabasz_score为:",ca)
print('davies_bouldin_score为:',dv)

使用聚类算法对图像进行压缩
其核心思想是:通过聚类将颜色表示数量减少。
RGB图像,3个通道,每个通道用8位表示,通过聚类,选取颜色空间
中的n个聚类,将图片上的每种颜色分配到一个类别,那么表示一种颜色
只需要log 2 n位,对图片进行了压缩。

在这里插入图片描述

图片压缩

import cv2
from sklearn.cluster import KMeans
import numpy as np

img = cv2.imread('lena.png')  # w,h ,c
img_data = img.reshape(-1,3)

kmeans = KMeans(n_clusters=16)
kmeans.fit(img_data)

new_img = kmeans.cluster_centers_[kmeans.labels_]
print(new_img.dtype)
new_img = new_img.astype(np.uint8)
new_img = new_img.reshape(img.shape)

cv2.imwrite('new_img1.png',new_img)

压缩后的图片

在这里插入图片描述

目录
相关文章
|
23天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
73 4
|
2天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
16 2
|
20天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
39 1
|
29天前
|
机器学习/深度学习 自然语言处理 算法
深入理解机器学习算法:从线性回归到神经网络
深入理解机器学习算法:从线性回归到神经网络
|
29天前
|
机器学习/深度学习 算法
深入探索机器学习中的决策树算法
深入探索机器学习中的决策树算法
36 0
|
15天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
21天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
8天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
17天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
8天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。