机器学习之算法案例手写数字识别

简介: 机器学习之算法案例手写数字识别

算法案例手写数字识别

MNIST数据集是机器学习领域中非常经典的一个数据集,由60000个
训练样本和10000个测试样本组成,每个样本都是一张28 * 28像素的灰度
手写数字图片。
在这里插入图片描述
选择算法,并保存模型

import pickle
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.ensemble import RandomForestClassifier
import joblib
with open('mnist.pkl','rb') as f:
    train, val ,test = pickle.load(f,encoding='iso-8859-1')

    train_x = train[0]
    train_y = train[1]
    test_x = test[0]
    test_y = test[1]
# lr = LogisticRegression()
# lr.fit(train_x,train_y)
rdt = RandomForestClassifier()
rdt.fit(train_x,train_y)

acc = accuracy_score(rdt.predict(train_x),train_y)
print("训练集上的准确率为:",acc)
acc = accuracy_score(rdt.predict(test_x),test_y)
print("测试集上的准确率为:",acc)

joblib.dump(rdt,'rdt.pkl')

加载模型

给出识别图片

在这里插入图片描述
颜色转换

import cv2
img = cv2.imread('1.png')
b = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
w = 255 - b
cv2.imwrite('9.png',w)

在这里插入图片描述

import joblib
import cv2
from sklearn.preprocessing import StandardScaler

rdt = joblib.load('rdt.pkl')

#读取图片
img = cv2.imread('9.png',0)
img = cv2.resize(img,(28,28))
test = img.reshape(1,28*28)

std = StandardScaler()
test = std.fit_transform(test)

pre = rdt.predict(test)
print(pre)

cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
下标为7,查找图片
。。0 。。。1。。。2。。。3。。4。。5。。。6。。7。。。8。。。9
在这里插入图片描述

目录
相关文章
|
1月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
9月前
|
人工智能 编解码 算法
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
本文介绍了通义灵码2.0 AI程序员在嵌入式开发中的实战应用。通过安装VS Code插件并登录阿里云账号,用户可切换至DeepSeek V3模型,利用其强大的代码生成能力。实战案例中,AI程序员根据自然语言描述快速生成了C语言的base64编解码算法,包括源代码、头文件、测试代码和CMake编译脚本。即使在编译错误和需求迭代的情况下,AI程序员也能迅速分析问题并修复代码,最终成功实现功能。作者认为,通义灵码2.0显著提升了开发效率,打破了编程语言限制,是AI编程从辅助工具向工程级协同开发转变的重要标志,值得开发者广泛使用。
8718 71
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
|
6月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
7月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
299 6
|
9月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
9月前
|
人工智能 编解码 算法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
215 0
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
|
1月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
183 0
|
1月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
140 2

热门文章

最新文章