【走进RDS】之RDS PostgreSQL索引推荐原理及最佳实践

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: 很多开发人员都知道索引对于数据库的查询性能至关重要,一个好的索引能使数据库的性能提升成千上万倍。但给数据库加索引是一项相对专业的工作,需要对数据库的运行原理有一定了解。同时,加了索引有没有性能提升、性能提升了多少,这些都是加索引前就想知道的。这项繁杂的工作有没有更好的方案呢?有!就是今天重磅推出的索引推荐。

前言


很多开发人员都知道索引对于数据库的查询性能至关重要,一个好的索引能使数据库的性能提升成千上万倍。但给数据库加索引是一项相对专业的工作,需要对数据库的运行原理有一定了解。同时,加了索引有没有性能提升、性能提升了多少,这些都是加索引前就想知道的。这项繁杂的工作有没有更好的方案呢?有!就是今天重磅推出的索引推荐。


索引推荐这项技术概括起来就是通过分析SQL,枚举可能的索引组合,并通过优化器What-If的能力,选出其中收益最高的索引组合推荐给用户。索引推荐可以极大降低用户的使用门槛,增加数据库智能化能力。RDS PostgreSQL在新版本中已经自带索引推荐功能,可以通过访问PostgreSQL数据库亦或通过RDS控制台使用索引推荐功能。


技术原理

1、索引推荐流程


1、分析 Indexable Column,分析出SQL中哪些列可以利用索引,例如:


  • Where条件中的 =, >, <, between, in等列
  • Order By的排序列
  • Group By的聚合列
  • MIN,MAX函数列
  • Join的Condition列


2、构建 Candidate Index


  • 从IndexableColumn中构建出所有可能的Candidate Index
  • Candidate Index分为单列索引和联合索引,单列索引包括所有Indexable Column,联合索引以一定规则组合Indexable Column


3、优化器What-If选择最优

  • 利用优化器What-If的能力,将Candidate Index逐一评估,通过{CPU cost + IO cost}衡量代价,最终选择出使得SQL执行代价最低的Candidate Index


2、优化器What-if能力


G查询优化是基于代价的,分为启动代价,运行代价,总代价,计算方式为{CPU cost + IO cost}。


  • 启动代价:读取到第一条元组前花费的代价,比如索引扫描节点的启动代价就是读取目标表的索引页,获取到第一个元组的代价。
  • 运行代价:获取全部元组的代价。
  • 总代价:二者之和。


索引的代价计算是由固定公式得来,只要构造索引时补充公式需要的变量,就可以利用到优化器的What-If能力。



方案实现


1、总体流程


1、采用通用的索引推荐流程,注册planner_hook,遍历查询树,构造索引项,依赖优化器的What-If能力得到结果。

image.png

2、智能化索引推荐


采用通用的索引推荐流程,注册planner_hook,遍历查询树,构造索引项,依赖优化器的What-If能力得到结果。

image.png


2、详细设计


从查询树到candidate index


针对一条SQL,我们利用内核构造的查询树,精确找到哪些列可以成为索引,制造出索引候选项,交由优化器选择。

image.png

最佳实践

1、从RDS控制台进行可视化操作

进入RDS实例详情页面 -> 自治服务 -> 慢SQL ,可以在此处获得相关操作指引。

image.png

2、实操步骤

1、创建表


CREATE TABLE t( a INT, b INT );
INSERT INTO t SELECT s, 99999 - s FROM generate_series(0,99999) AS s;
ANALYZE t;
所生成的表包含以下各行:
   a   |   b
-------+-------
     0 | 99999
     1 | 99998
     2 | 99997
     3 | 99996
       .
       .
       .
 99997 |     2
 99998 |     1
 99999 |     0



2、查询单条SQL建议说明


如果希望索引推荐分析查询并提出索引编制建议但不实际执行查询,将EXPLAIN关键字作为SQL语句的前缀,示例如下:

postgres=# EXPLAIN SELECT * FROM t WHERE a < 10000;
                                   QUERY PLAN                                    
---------------------------------------------------------------------------------
 Seq Scan on t  (cost=0.00..1693.00 rows=9983 width=8)
   Filter: (a < 10000)
 Result  (cost=0.00..0.00 rows=0 width=0)
   One-Time Filter: '** plan (using Index Adviser) **'::text
   ->  Index Scan using "<1>t_a_idx" on t  (cost=0.42..256.52 rows=9983 width=8)
         Index Cond: (a < 10000)
(6 rows)

postgres=# EXPLAIN SELECT * FROM t WHERE a = 100;
                                 QUERY PLAN                                 
----------------------------------------------------------------------------
 Seq Scan on t  (cost=0.00..1693.00 rows=1 width=8)
   Filter: (a = 100)
 Result  (cost=0.00..0.00 rows=0 width=0)
   One-Time Filter: '** plan (using Index Adviser) **'::text
   ->  Index Scan using "<1>t_a_idx" on t  (cost=0.42..2.64 rows=1 width=8)
         Index Cond: (a = 100)
(6 rows)

postgres=# EXPLAIN SELECT * FROM t WHERE b = 10000;
                                 QUERY PLAN                                 
----------------------------------------------------------------------------
 Seq Scan on t  (cost=0.00..1693.00 rows=1 width=8)
   Filter: (b = 10000)
 Result  (cost=0.00..0.00 rows=0 width=0)
   One-Time Filter: '** plan (using Index Adviser) **'::text
   ->  Index Scan using "<1>t_b_idx" on t  (cost=0.42..2.64 rows=1 width=8)
         Index Cond: (b = 10000)
(6 rows)

可通过psql命令行查询index_advisory表内存储的索引编制建议,示例如下:

postgres=# SELECT * FROM index_advisory;
 reloid | relname | attrs | benefit | original_cost | new_cost | index_size | backend_pid |            timestamp
--------+---------+-------+---------+---------------+----------+------------+-------------+----------------------------------
  16438 | t       | {1}   | 1337.43 |          1693 |  355.575 |       2624 |       79370 | 18-JUN-21 08:55:51.492388 +00:00
  16438 | t       | {1}   | 1684.56 |          1693 |    8.435 |       2624 |       79370 | 18-JUN-21 08:59:00.319336 +00:00
  16438 | t       | {2}   | 1684.56 |          1693 |    8.435 |       2624 |       79370 | 18-JUN-21 08:59:07.814453 +00:00
(3 rows)


image.png

如果语句不带EXPLAIN关键字前缀,索引推荐将在语句执行期间分析语句并记录建议。


3、查询WorkLoad级别建议


通过show_index_advisory()函数获取单个会话的WorkLoad建议,此函数用于获取单个会话的索引推荐(由后端进程ID标识),可通过指定会话的进程ID


来调用该函数:

SELECT show_index_advisory( pid );


其中,pid 是当前会话的进程 ID。如果不知道当前会话的进程 ID,则传递值 NULL 也将为当前会话返回结果集。

postgres=# SELECT show_index_advisory(null);
                                                             show_index_advisory
----------------------------------------------------------------------------------------------------------------------------------------------------
 create index idx_t_a on public.t(a);/* size: 2624 KB, benefit: 3021.99, gain: 1.15167301457103, original_cost: 1693, new_cost: 182.005006313324 */
 create index idx_t_b on public.t(b);/* size: 2624 KB, benefit: 1684.56, gain: 0.641983590474943, original_cost: 1693, new_cost: 8.4350004196167 */
(2 rows)


说明 结果集中每行的表示意义如下:


  • 创建索引推荐建议的索引所需的SQL语句。
  • 索引页的估计大小。
  • 使用索引的总收益(benefit)。
  • 使用索引的增益(gain=benefit/size)。
  • 使用索引之前的平均代价(即执行SQL的预估时间)。
  • 使用索引之后的平均代价(即执行SQL的预估时间)。


通过select_index_advisory视图获取所有会话的WorkLoad建议,此视图包含计算的指标和CREATE INDEX语句,展示当前位于index_advisory表中所有会话的索引编制建议。表t中列a和列b的索引编制建议显示如下:

postgres=# SELECT * FROM select_index_advisory;
 backend_pid |                                                             show_index_advisory
-------------+----------------------------------------------------------------------------------------------------------------------------------------------------
       79370 | create index idx_t_a on public.t(a);/* size: 2624 KB, benefit: 3021.99, gain: 1.15167301457103, original_cost: 1693, new_cost: 182.005006313324 */
       79370 | create index idx_t_b on public.t(b);/* size: 2624 KB, benefit: 1684.56, gain: 0.641983590474943, original_cost: 1693, new_cost: 8.4350004196167 */
(2 rows)


在每个会话中,从同一建议的索引中受益的所有查询的结果将被组合起来,以便按每个建议的索引生成一组指标,此指标反映在名为benefit和gain的字段中,字段公式如下所示:

size = MAX(index size of all queries)
benefit = SUM(benefit of each query)
gain = SUM(benefit of each query) / MAX(index size of all queries)


说明 如果单条SQL建议同时创建多个索引,则index_advisory表中记录的new_cost为创建了多个索引之后的代价,而非创建某一个索引之后的代价。


当对给定会话期间得到的不同建议索引的相对优势进行比较时,gain指标十分有用。gain值越大,从索引中得到的成本效益就越高,这可以抵消索引可能消耗的磁盘空间。


未来展望

阿里云RDS PostgreSQL的索引推荐功能未来还会朝着以下几个方面进行扩展:


  1. 支持GIN、GIST、BRIN索引的推荐。BRIN索引为block索引,对于无法评估数据分布的场景无法推荐;GIST是数据聚集后的结果,也需要对数据分布有所了解;


  1. WorkLoad级别的推荐可以更加细化,当前是以benefit做聚合和排序,得出索引推荐,后续可以更加精细化。


作者信息


赵锐,花名:惜元,专注于RDS PostgreSQL内核研发,热爱和分享PostgreSQL数据库相关技术。欢迎有志之士加入RDS产品部!联系邮箱:vogts.wangt@alibaba-inc.com

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
3月前
|
SQL 人工智能 关系型数据库
AI Agent的未来之争:任务规划,该由人主导还是AI自主?——阿里云RDS AI助手的最佳实践
AI Agent的规划能力需权衡自主与人工。阿里云RDS AI助手实践表明:开放场景可由大模型自主规划,高频垂直场景则宜采用人工SOP驱动,结合案例库与混合架构,实现稳定、可解释的企业级应用,推动AI从“能聊”走向“能用”。
931 39
AI Agent的未来之争:任务规划,该由人主导还是AI自主?——阿里云RDS AI助手的最佳实践
|
4月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS费用价格:MySQL、SQL Server、PostgreSQL和MariaDB引擎收费标准
阿里云RDS数据库支持MySQL、SQL Server、PostgreSQL、MariaDB,多种引擎优惠上线!MySQL倚天版88元/年,SQL Server 2核4G仅299元/年,PostgreSQL 227元/年起。高可用、可弹性伸缩,安全稳定。详情见官网活动页。
875 152
|
6月前
|
存储 SQL 关系型数据库
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
|
10月前
|
自然语言处理 搜索推荐 关系型数据库
MySQL实现文档全文搜索,分词匹配多段落重排展示,知识库搜索原理分享
本文介绍了在文档管理系统中实现高效全文搜索的方案。为解决原有ES搜索引擎私有化部署复杂、运维成本高的问题,我们转而使用MySQL实现搜索功能。通过对用户输入预处理、数据库模糊匹配、结果分段与关键字标红等步骤,实现了精准且高效的搜索效果。目前方案适用于中小企业,未来将根据需求优化并可能重新引入专业搜索引擎以提升性能。
465 5
|
4月前
|
关系型数据库 MySQL 数据库
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎
阿里云数据库RDS支持MySQL、SQL Server、PostgreSQL和MariaDB引擎,提供高性价比、稳定安全的云数据库服务,适用于多种行业与业务场景。
|
6月前
|
SQL 关系型数据库 MySQL
MySQL group by 底层原理详解。group by 执行 慢 原因深度分析。(图解+秒懂+史上最全)
MySQL group by 底层原理详解。group by 执行 慢 原因深度分析。(图解+秒懂+史上最全)
MySQL group by 底层原理详解。group by 执行 慢 原因深度分析。(图解+秒懂+史上最全)
|
9月前
|
人工智能 运维 关系型数据库
云服务API与MCP深度集成,RDS MCP最佳实践
近日,阿里云数据库RDS发布开源RDS MCP Server,将复杂的技术操作转化为自然语言交互,实现"对话即运维"的流畅体验。通过将RDS OpenAPI能力封装为MCP协议工具,用户只需像聊天一样描述需求,即可完成数据库实例创建、性能调优、故障排查等专业操作。本文介绍了RDS MCP(Model Context Protocol)的最佳实践及其应用,0代码,两步即可轻松完成RDS实例选型与创建,快来体验!
云服务API与MCP深度集成,RDS MCP最佳实践
|
11月前
|
关系型数据库 MySQL 数据库
RDS用多了,你还知道MySQL主从复制底层原理和实现方案吗?
随着数据量增长和业务扩展,单个数据库难以满足需求,需调整为集群模式以实现负载均衡和读写分离。MySQL主从复制是常见的高可用架构,通过binlog日志同步数据,确保主从数据一致性。本文详细介绍MySQL主从复制原理及配置步骤,包括一主二从集群的搭建过程,帮助读者实现稳定可靠的数据库高可用架构。
629 9
RDS用多了,你还知道MySQL主从复制底层原理和实现方案吗?
|
11月前
|
SQL 存储 关系型数据库
MySQL主从复制 —— 作用、原理、数据一致性,异步复制、半同步复制、组复制
MySQL主从复制 作用、原理—主库线程、I/O线程、SQL线程;主从同步要求,主从延迟原因及解决方案;数据一致性,异步复制、半同步复制、组复制
1238 11
|
12月前
|
SQL 人工智能 关系型数据库
【PG锦囊】阿里云 RDS PostgreSQL 版插件—AI 插件(rds_ai)
本文介绍了AI 插件(rds_ai)的核心优势、适用场景等,帮助您更好地了解 rds_ai 插件。想了解更多 RDS 插件信息和讨论交流,欢迎加入 RDS PG 插件用户专项服务群(103525002795)

相关产品

  • 云数据库 RDS
  • 云数据库 RDS PostgreSQL 版
  • 云数据库 RDS MySQL 版
  • 推荐镜像

    更多