算法系统学习-大事化小,小事化了(分而治之)

简介: 该系列是基于有一定语言基础(C,C++,Java等等)和基本的数据结构基础进行的算法学习专栏,如果觉得有点吃力 😥 ,建议先了解前提知识再学习喔!本个专栏会将用更容易理解的表达去学习算法,如果在一些表述上存在问题还请各位多多指点

分而治之算法


主要的设计思想是:将一个难以解决的大问题,分割成几个规模较小的相似问题,逐个击破。其实这个算法并不陌生,在数据结构中很常见例如:折半查找,合并排序,快速排序,二叉树遍历(先左后右),二叉树排序树的查找算法。


算法思路:

可以用一个递归过程表示,分治法就是一种大规模问题与小规模问题关系的方法,是递归设计方法的一种具体策略,分治法在每一层递归上一般分为三个步骤:

1、分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题

2、解决:若子问题规模较小而容易被解决,则直接解决,否则再继续分解成更小规模的问题,直到容易解决

3、合并:将已求解的各个子问题的解,逐步合并成原问题的解

常见分为等分分治法和非等分治法


二分法


不同于现实中对问题的分解,需要考虑问题的重点,难点,承担人员的能力等来进行问题的分解和分配,在算法设计中每次一个问题分解成的子问题个数的一般是固定的,每个子问题的规模也是平均分配的。当每次都将问题分解成原问题的一半时,称为 二分法。 (二分法是分治法较为常用分解策略,折半查找,归并排序等算法都是采用此策略实现的)

Case1:金块问题

老板有一袋金块(共n块)。最优秀的雇员得到其中的最重的一块,最差的雇员得到最轻的一块,假设有一台比较重量的仪器,请使用最少的比较次数找出最重的金块


算法分析:

比较简单的方法是逐个进行查找,先拿两块比较重量,留下重的一个与下一块比较,直到全部比较完毕,就找到了最重的金子。(类似于选择排序)


算法设计:

maxmin(float a[],int n){
  max ==min =a[1];
    for(i=2;i<=n;i++){
        if(max<a[i]){
        max=a[i];
        }else if(min>a[i]){
            min=a[i];
        }
    }
}

算法中需要n-1次比较从而得到max,

最好的情况是金块是由小到大取出的,不需要进行与min的比较,共进行n-1次比较,

最坏的情况是金块由大到小取出的,需要再经过n-1次比较得到min,共进行2n-2次比较的

至于在平均的情况下,a(i)将有一般的时间比max大,因此平均比较数是 3(n-1)/2


Case2:求数列的最大子段和(不独立子问题)

给定n个元素的整数列(可能为负整数)a1,a2....an求形如:ai,ai+1,....aj(i,j=1.....n,i<=j)的子段,使其和为最大。当所有整数均为负整数时定义其最大子段和为0。例如当(a1,a2,a3,a4,a5,a6)=(-2,11,-4,13,-5,-2)时,最大子段和为i=2,j=4(下标从1开始)

问题分析:


若用二分法将实例中的数据分解成两组(-2,11,-4)和(13,-5,-2),第一个子问题的解是11,第二个子问题的解是13,两个子问题的解不能简单地得到问题的解。由此看出这个问题不能用二分法分解成为独立的两个子问题,子问题中间还有公共的子问题,这类问题称为子问题重叠类的问题。那么,怎样解决这类问题呢?(不独立子问题)

算法分析:

分解方法还是用二分法,虽然分解后的子问题并不独立,但通过对重叠的子问题进行专门处理,并对所有的问题合并进行设计,就可以用二分法策略解决问题。

如果将所给的序列a【1:n】分为长度相等的两段a【1 :(n/2)】和a【(n/2)+1:n】分别求出这两段的最大子段和,则a【1:n】的最大子段和有三种情形:

  1. a【1:n】的最大子段和与a[1:(n/2)]的最大子段和相同
  2. a【1:n】的最大子段和与a[(n/2)+1:n]的最大子段和相同
  3. a【1:n】的最大子段和与a[i:j],且1≤i≤(n/2), (n/2)+1≤j≤n;

对于情况1,2可分别递归求得。但是对于情况3,a[(n/2)] 和a[(n/2)+1]一定在最优的子序列中,因此可得a[i:(n/2)]的最大值s1,并计算出a[(n/2)+1:j]中的最大值s2,则情况3的最优值为 s1+s2

算法设计:

int max_sum3 (int a[],int n)
{
return (max_sub_sum (a,1,n));
}
max_sub_sum(int a [],int left,int right){
int center,i,j,sum,left_sum,right_sum,s1,s2,lefts,rights;
    if(left =right){
      if(a[left]>0){
            return(a[left]);
      }else{
        return (0);
        }
    }else{
    center =(left +right )/2;
        left_sum=max_sub_sum(a,left,center);
        right_sum=max_sub_sum(a,center+1,right);
        s1=0;
        lefts=0;
        for(i=center;i>=left;i--){
            { lefts=lefts+a[i];
              if(lefts>s1){
                s1=lefts;
                }
            }
        s2=0;righs=0;
        for(i=center+1;i<=right;i++){
            rights=rights+a[i];
              if(rights>s2){
                    s2=rights;
                }
        }
        }
        if(s1+s2<left_sum and right_sum <left_sum){
            return(left_sum);
        }      
        if(s1+s2<right ){
            return(right_sum);
        }
        return (s1+s2);
    }
}


目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
132 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
355 55
|
3天前
|
算法
基于电导增量MPPT控制算法的光伏发电系统simulink建模与仿真
本课题基于电导增量MPPT控制算法,使用MATLAB2022a的Simulink进行光伏发电系统的建模与仿真,输出系统电流、电压及功率。电导增量调制(IC)算法通过检测电压和电流变化率,实时调整光伏阵列工作点,确保其在不同光照和温度条件下始终处于最大功率输出状态。仿真结果展示了该算法的有效性,并结合PWM技术调节逆变流器占空比,提高系统效率和稳定性。
|
2月前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
132 66
|
1月前
|
负载均衡 算法
架构学习:7种负载均衡算法策略
四层负载均衡包括数据链路层、网络层和应用层负载均衡。数据链路层通过修改MAC地址转发帧;网络层通过改变IP地址实现数据包转发;应用层有多种策略,如轮循、权重轮循、随机、权重随机、一致性哈希、响应速度和最少连接数均衡,确保请求合理分配到服务器,提升性能与稳定性。
240 11
架构学习:7种负载均衡算法策略
|
26天前
|
存储 监控 算法
内网监控系统之 Go 语言布隆过滤器算法深度剖析
在数字化时代,内网监控系统对企业和组织的信息安全至关重要。布隆过滤器(Bloom Filter)作为一种高效的数据结构,能够快速判断元素是否存在于集合中,适用于内网监控中的恶意IP和违规域名筛选。本文介绍其原理、优势及Go语言实现,提升系统性能与响应速度,保障信息安全。
28 5
|
2月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
220 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
1月前
|
算法
基于爬山法MPPT最大功率跟踪算法的光伏发电系统simulink建模与仿真
本课题基于爬山法MPPT算法,对光伏发电系统进行Simulink建模与仿真。使用MATLAB2022a版本,通过调整光伏电池的工作状态以实现最大功率输出。爬山法通过逐步优化工作点,确保光伏系统在不同条件下均能接近最大功率点。仿真结果显示该方法的有效性,验证了模型的正确性和可行性。
|
2月前
|
监控 算法 JavaScript
基于 Node.js Socket 算法搭建局域网屏幕监控系统
在数字化办公环境中,局域网屏幕监控系统至关重要。基于Node.js的Socket算法实现高效、稳定的实时屏幕数据传输,助力企业保障信息安全、监督工作状态和远程技术支持。通过Socket建立监控端与被监控端的数据桥梁,确保实时画面呈现。实际部署需合理分配带宽并加密传输,确保信息安全。企业在使用时应权衡利弊,遵循法规,保障员工权益。
52 7
|
2月前
|
机器学习/深度学习 缓存 人工智能
【AI系统】QNNPack 算法
QNNPACK是Marat Dukhan开发的量化神经网络计算加速库,专为移动端优化,性能卓越。本文介绍QNNPACK的实现,包括间接卷积算法、内存重排和间接缓冲区等关键技术,有效解决了传统Im2Col+GEMM方法存在的空间消耗大、缓存效率低等问题,显著提升了量化神经网络的计算效率。
56 6
【AI系统】QNNPack 算法

热门文章

最新文章