七. 详解RunLoop相关类及作用
通过上面的分析,我们对RunLoop内部结构有了大致的了解,接下来来详细分析RunLoop的相关类。以下为Core Foundation中关于RunLoop的5个类
- CFRunLoopRef - 获得当前RunLoop和主RunLoop
- CFRunLoopModeRef - RunLoop 运行模式,只能选择一种,在不同模式中做不同的操作
- CFRunLoopSourceRef - 事件源,输入源
- CFRunLoopTimerRef - 定时器时间
- CFRunLoopObserverRef - 观察者
1. CFRunLoopModeRef
CFRunLoopModeRef代表RunLoop的运行模式 一个 RunLoop 包含若干个 Mode,每个Mode又包含若干个Source、Timer、Observer 每次RunLoop启动时,只能指定其中一个 Mode,这个Mode被称作 CurrentMode 如果需要切换Mode,只能退出RunLoop,再重新指定一个Mode进入,这样做主要是为了分隔开不同组的Source、Timer、Observer,让其互不影响。如果Mode里没有任何Source0/Source1/Timer/Observer,RunLoop会立马退出 如图所示:
注意:一种Mode中可以有多个Source(事件源,输入源,基于端口事件源例键盘触摸等) Observer(观察者,观察当前RunLoop运行状态) 和Timer(定时器事件源)。但是必须至少有一个Source或者Timer,因为如果Mode为空,RunLoop运行到空模式不会进行空转,就会立刻退出。
系统默认注册的5个Mode:
RunLoop 有五种运行模式,其中常见的有1.2两种
- kCFRunLoopDefaultMode:App的默认Mode,通常主线程是在这个Mode下运行
- UITrackingRunLoopMode:界面跟踪 Mode,用于 ScrollView 追踪触摸滑动,保证界面滑动时不受其他 Mode 影响
- UIInitializationRunLoopMode: 在刚启动 App 时第进入的第一个 Mode,启动完成后就不再使用,会切换到kCFRunLoopDefaultMode
- GSEventReceiveRunLoopMode: 接受系统事件的内部 Mode,通常用不到
- kCFRunLoopCommonModes: 这是一个占位用的Mode,作为标记kCFRunLoopDefaultMode和UITrackingRunLoopMode用,并不是一种真正的Mode
Mode间的切换
我们平时在开发中一定遇到过,当我们使用NSTimer每一段时间执行一些事情时滑动UIScrollView,NSTimer就会暂停,当我们停止滑动以后,NSTimer又会重新恢复的情况,我们通过一段代码来看一下 代码中的注释也很重要,展示了我们探索的过程
-(void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event { // [NSTimer scheduledTimerWithTimeInterval:2.0 target:self selector:@selector(show) userInfo:nil repeats:YES]; NSTimer *timer = [NSTimer timerWithTimeInterval:2.0 target:self selector:@selector(show) userInfo:nil repeats:YES]; // 加入到RunLoop中才可以运行 // 1. 把定时器添加到RunLoop中,并且选择默认运行模式NSDefaultRunLoopMode = kCFRunLoopDefaultMode // [[NSRunLoop mainRunLoop] addTimer:timer forMode:NSDefaultRunLoopMode]; // 当textFiled滑动的时候,timer失效,停止滑动时,timer恢复 // 原因:当textFiled滑动的时候,RunLoop的Mode会自动切换成UITrackingRunLoopMode模式,因此timer失效,当停止滑动,RunLoop又会切换回NSDefaultRunLoopMode模式,因此timer又会重新启动了 // 2. 当我们将timer添加到UITrackingRunLoopMode模式中,此时只有我们在滑动textField时timer才会运行 // [[NSRunLoop mainRunLoop] addTimer:timer forMode:UITrackingRunLoopMode]; // 3. 那个如何让timer在两个模式下都可以运行呢? // 3.1 在两个模式下都添加timer 是可以的,但是timer添加了两次,并不是同一个timer // 3.2 使用站位的运行模式 NSRunLoopCommonModes标记,凡是被打上NSRunLoopCommonModes标记的都可以运行,下面两种模式被打上标签 //0 : <CFString 0x10b7fe210 [0x10a8c7a40]>{contents = "UITrackingRunLoopMode"} //2 : <CFString 0x10a8e85e0 [0x10a8c7a40]>{contents = "kCFRunLoopDefaultMode"} // 因此也就是说如果我们使用NSRunLoopCommonModes,timer可以在UITrackingRunLoopMode,kCFRunLoopDefaultMode两种模式下运行 [[NSRunLoop mainRunLoop] addTimer:timer forMode:NSRunLoopCommonModes]; NSLog(@"%@",[NSRunLoop mainRunLoop]); } -(void)show { NSLog(@"-------"); }
由上述代码可以看出,NSTimer不管用是因为Mode的切换,因为如果我们在主线程使用定时器,此时RunLoop的Mode为kCFRunLoopDefaultMode,即定时器属于kCFRunLoopDefaultMode,那么此时我们滑动ScrollView时,RunLoop的Mode会切换到UITrackingRunLoopMode,因此在主线程的定时器就不在管用了,调用的方法也就不再执行了,当我们停止滑动时,RunLoop的Mode切换回kCFRunLoopDefaultMode,所以NSTimer就又管用了。 同样道理的还有ImageView的显示,我们直接来看代码,不再赘述了
- (void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event { NSLog(@"%s",__func__); // performSelector默认是在default模式下运行,因此在滑动ScrollView时,图片不会加载 // [self.imageView performSelector:@selector(setImage:) withObject:[UIImage imageNamed:@"abc"] afterDelay:2.0 ]; // inModes: 传入Mode数组 [self.imageView performSelector:@selector(setImage:) withObject:[UIImage imageNamed:@"abc"] afterDelay:2.0 inModes:@[NSDefaultRunLoopMode,UITrackingRunLoopMode]]; }
使用GCD也可是创建计时器,而且更为精确我们来看一下代码
- (void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event { //创建队列 dispatch_queue_t queue = dispatch_get_global_queue(0, 0); //1.创建一个GCD定时器 /* 第一个参数:表明创建的是一个定时器 第四个参数:队列 */ dispatch_source_t timer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, queue); // 需要对timer进行强引用,保证其不会被释放掉,才会按时调用block块 // 局部变量,让指针强引用 self.timer = timer; //2.设置定时器的开始时间,间隔时间,精准度 /* 第1个参数:要给哪个定时器设置 第2个参数:开始时间 第3个参数:间隔时间 第4个参数:精准度 一般为0 在允许范围内增加误差可提高程序的性能 GCD的单位是纳秒 所以要*NSEC_PER_SEC */ dispatch_source_set_timer(timer, DISPATCH_TIME_NOW, 2.0 * NSEC_PER_SEC, 0 * NSEC_PER_SEC); //3.设置定时器要执行的事情 dispatch_source_set_event_handler(timer, ^{ NSLog(@"---%@--",[NSThread currentThread]); }); // 启动 dispatch_resume(timer); }
2. CFRunLoopSourceRef事件源(输入源)
Source分为两种
- Source0:非基于Port的 用于用户主动触发的事件(点击button 或点击屏幕)
- Source1:基于Port的 通过内核和其他线程相互发送消息(与内核相关)
触摸事件及PerformSelectors会触发Source0事件源在前文已经验证过,这里不在赘述
3. CFRunLoopObserverRef
CFRunLoopObserverRef是观察者,能够监听RunLoop的状态改变
我们直接来看代码,给RunLoop添加监听者,监听其运行状态
- (void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event { //创建监听者 /* 第一个参数 CFAllocatorRef allocator:分配存储空间 CFAllocatorGetDefault()默认分配 第二个参数 CFOptionFlags activities:要监听的状态 kCFRunLoopAllActivities 监听所有状态 第三个参数 Boolean repeats:YES:持续监听 NO:不持续 第四个参数 CFIndex order:优先级,一般填0即可 第五个参数 回调 两个参数observer:监听者 activity:监听的事件 */ /* 所有事件 typedef CF_OPTIONS(CFOptionFlags, CFRunLoopActivity) { kCFRunLoopEntry = (1UL << 0), // 即将进入RunLoop kCFRunLoopBeforeTimers = (1UL << 1), // 即将处理Timer kCFRunLoopBeforeSources = (1UL << 2), // 即将处理Source kCFRunLoopBeforeWaiting = (1UL << 5), //即将进入休眠 kCFRunLoopAfterWaiting = (1UL << 6),// 刚从休眠中唤醒 kCFRunLoopExit = (1UL << 7),// 即将退出RunLoop kCFRunLoopAllActivities = 0x0FFFFFFFU }; */ CFRunLoopObserverRef observer = CFRunLoopObserverCreateWithHandler(CFAllocatorGetDefault(), kCFRunLoopAllActivities, YES, 0, ^(CFRunLoopObserverRef observer, CFRunLoopActivity activity) { switch (activity) { case kCFRunLoopEntry: NSLog(@"RunLoop进入"); break; case kCFRunLoopBeforeTimers: NSLog(@"RunLoop要处理Timers了"); break; case kCFRunLoopBeforeSources: NSLog(@"RunLoop要处理Sources了"); break; case kCFRunLoopBeforeWaiting: NSLog(@"RunLoop要休息了"); break; case kCFRunLoopAfterWaiting: NSLog(@"RunLoop醒来了"); break; case kCFRunLoopExit: NSLog(@"RunLoop退出了"); break; default: break; } }); // 给RunLoop添加监听者 /* 第一个参数 CFRunLoopRef rl:要监听哪个RunLoop,这里监听的是主线程的RunLoop 第二个参数 CFRunLoopObserverRef observer 监听者 第三个参数 CFStringRef mode 要监听RunLoop在哪种运行模式下的状态 */ CFRunLoopAddObserver(CFRunLoopGetCurrent(), observer, kCFRunLoopDefaultMode); /* CF的内存管理(Core Foundation) 凡是带有Create、Copy、Retain等字眼的函数,创建出来的对象,都需要在最后做一次release GCD本来在iOS6.0之前也是需要我们释放的,6.0之后GCD已经纳入到了ARC中,所以我们不需要管了 */ CFRelease(observer); }
我们来看一下输出
以上可以看出,Observer确实用来监听RunLoop的状态,包括唤醒,休息,以及处理各种事件。
八. RunLoop处理逻辑
这时我们再来分析RunLoop的处理逻辑,就会简单明了很多,现在回头看官方文档RunLoop的处理逻辑,对RunLoop的处理逻辑有新的认识。
源码解析
下面源码仅保留了主流程代码
// 共外部调用的公开的CFRunLoopRun方法,其内部会调用CFRunLoopRunSpecific void CFRunLoopRun(void) { /* DOES CALLOUT */ int32_t result; do { result = CFRunLoopRunSpecific(CFRunLoopGetCurrent(), kCFRunLoopDefaultMode, 1.0e10, false); CHECK_FOR_FORK(); } while (kCFRunLoopRunStopped != result && kCFRunLoopRunFinished != result); } // 经过精简的 CFRunLoopRunSpecific 函数代码,其内部会调用__CFRunLoopRun函数 SInt32 CFRunLoopRunSpecific(CFRunLoopRef rl, CFStringRef modeName, CFTimeInterval seconds, Boolean returnAfterSourceHandled) { /* DOES CALLOUT */ // 通知Observers : 进入Loop // __CFRunLoopDoObservers内部会调用 __CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION__函数 if (currentMode->_observerMask & kCFRunLoopEntry ) __CFRunLoopDoObservers(rl, currentMode, kCFRunLoopEntry); // 核心的Loop逻辑 result = __CFRunLoopRun(rl, currentMode, seconds, returnAfterSourceHandled, previousMode); // 通知Observers : 退出Loop if (currentMode->_observerMask & kCFRunLoopExit ) __CFRunLoopDoObservers(rl, currentMode, kCFRunLoopExit); return result; } // 精简后的 __CFRunLoopRun函数,保留了主要代码 static int32_t __CFRunLoopRun(CFRunLoopRef rl, CFRunLoopModeRef rlm, CFTimeInterval seconds, Boolean stopAfterHandle, CFRunLoopModeRef previousMode) { int32_t retVal = 0; do { // 通知Observers:即将处理Timers __CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeTimers); // 通知Observers:即将处理Sources __CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeSources); // 处理Blocks __CFRunLoopDoBlocks(rl, rlm); // 处理Sources0 if (__CFRunLoopDoSources0(rl, rlm, stopAfterHandle)) { // 处理Blocks __CFRunLoopDoBlocks(rl, rlm); } // 如果有Sources1,就跳转到handle_msg标记处 if (__CFRunLoopServiceMachPort(dispatchPort, &msg, sizeof(msg_buffer), &livePort, 0, &voucherState, NULL)) { goto handle_msg; } // 通知Observers:即将休眠 __CFRunLoopDoObservers(rl, rlm, kCFRunLoopBeforeWaiting); // 进入休眠,等待其他消息唤醒 __CFRunLoopSetSleeping(rl); __CFPortSetInsert(dispatchPort, waitSet); do { __CFRunLoopServiceMachPort(waitSet, &msg, sizeof(msg_buffer), &livePort, poll ? 0 : TIMEOUT_INFINITY, &voucherState, &voucherCopy); } while (1); // 醒来 __CFPortSetRemove(dispatchPort, waitSet); __CFRunLoopUnsetSleeping(rl); // 通知Observers:已经唤醒 __CFRunLoopDoObservers(rl, rlm, kCFRunLoopAfterWaiting); handle_msg: // 看看是谁唤醒了RunLoop,进行相应的处理 if (被Timer唤醒的) { // 处理Timer __CFRunLoopDoTimers(rl, rlm, mach_absolute_time()); } else if (被GCD唤醒的) { __CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE__(msg); } else { // 被Sources1唤醒的 __CFRunLoopDoSource1(rl, rlm, rls, msg, msg->msgh_size, &reply); } // 执行Blocks __CFRunLoopDoBlocks(rl, rlm); // 根据之前的执行结果,来决定怎么做,为retVal赋相应的值 if (sourceHandledThisLoop && stopAfterHandle) { retVal = kCFRunLoopRunHandledSource; } else if (timeout_context->termTSR < mach_absolute_time()) { retVal = kCFRunLoopRunTimedOut; } else if (__CFRunLoopIsStopped(rl)) { __CFRunLoopUnsetStopped(rl); retVal = kCFRunLoopRunStopped; } else if (rlm->_stopped) { rlm->_stopped = false; retVal = kCFRunLoopRunStopped; } else if (__CFRunLoopModeIsEmpty(rl, rlm, previousMode)) { retVal = kCFRunLoopRunFinished; } } while (0 == retVal); return retVal; }
上述源代码中,相应处理事件函数内部还会调用更底层的函数,内部调用才是真正处理事件的函数,通过上面bt打印全部堆栈信息也可以得到验证。
1)__CFRunLoopDoObservers 内部调用: CFRUNLOOP_IS_CALLING_OUT_TO_AN_OBSERVER_CALLBACK_FUNCTION
2)__CFRunLoopDoBlocks 内部调用:CFRUNLOOP_IS_CALLING_OUT_TO_A_BLOCK
3)__CFRunLoopDoSources0 内部调用:CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE0_PERFORM_FUNCTION
4)__CFRunLoopDoTimers 内部调用:CFRUNLOOP_IS_CALLING_OUT_TO_A_TIMER_CALLBACK_FUNCTION
5)GCD 调用:CFRUNLOOP_IS_SERVICING_THE_MAIN_DISPATCH_QUEUE
6)__CFRunLoopDoSource1 内部调用:CFRUNLOOP_IS_CALLING_OUT_TO_A_SOURCE1_PERFORM_FUNCTION
RunLoop处理逻辑流程图
此时我们按照源码重新整理一下RunLoop处理逻辑就会很清晰