Transformer 是拥抱数据不确定性的艺术

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: Transformer 是拥抱数据不确定性的艺术

Transformer的架构、训练及推理等都是在Bayesian神经网络不确定性数学思维下来完成的。Encoder-Decoder架构、Multi-head注意力机制、Dropout和残差网络等都是Bayesian神经网络的具体实现;基于Transformer各种模型变种及实践也都是基于Bayesian思想指导下来应对数据的不确定性;混合使用各种类型的Embeddings来提供更好Prior信息其实是应用Bayesian思想来集成处理信息表达的不确定性、各种现代NLP比赛中高分的作品也大多是通过集成RoBERTa、GPT、ELECTRA、XLNET等Transformer模型等来尽力从最大程度来对抗模型信息表示和推理的不确定性。


从数学原理的角度来说,传统Machine Learning及Deep learning算法训练的目标函数一般是基于Naive Bayes数学原理下的最大似然估计MLE和最大后验概率MAP来实现,其核心是寻找出最佳的模型参数;而Bayesian的核心是通过计算后验概率Posterior的predictive distribution,其通过提供模型的不确定来更好的表达信息及应对不确定性。


对于Bayesian架构而言,多视角的先验概率Prior知识是基础,在只有小数据甚至没有数据的时候是主要依赖模型Prior概率分布(例如经典的高斯分布)来进行模型推理,随着数据的增加,多个模型会不断更新每个模型的参数来更加趋近真实数据的模型概率分布;与此同时,由于(理论上)集成所有的模型参数来进行Inference,所以Bayesian神经网络能够基于概率对结果的提供基于置信度Confidence的分布区间,从而在各种推理任务中更好的掌握数据的不确定性。


当然,由于Bayesian模型因为昂贵的CPU、Memory及Network的使用,在实际工程实践中计算Bayesian神经网络中所有概率模型分布P(B)是棘手的甚至是Intractable的几乎不能实现事情,所以在工程落地的时候会采用Sampling技术例如MCMC的Collapsed Gibbs Sampling、Metropolis Hastings、Rejection Sampling及Variational Inference的Mean Field及Stochastic等方法来降低训练和推理的成本。Transformer落地Bayesian思想的时候权衡多种因素而实现最大程度的近似估计Approximation,例如起使用了计算上相对CNN、RNN等具有更高CPU和内存使用性价比的Multi-head self-attention机制来完成更多视角信息集成的表达,在Decoder端训练时候一般也会使用多维度的Prior信息完成更快的训练速度及更高质量的模型训练,在正常的工程落地中Transformer一般也会集成不同来源的Embeddings,例如星空智能对话机器人的Transformer实现中就把One-hot encoding、Word2vec、fastText、GRU、BERT等encoding集成来更多层级和更多视角的表达信息。


拥抱数据不确定性的Transformer基于Bayesian下共轭先验分布conjugate prior distribution等特性形成了能够整合各种Prior知识及多元化进行信息表达、及廉价训练和推理的理想架构。理论上讲Transformer能够更好的处理一切以 “set of units” 存在的数据,而计算机视觉、语音、自然语言处理等属于这种类型的数据,所以理论上讲Transformer会在接下来数十年对这些领域形成主导性的统治力。


基于此,我们开发了全新一代围绕Transformer的自然语言处理课程:


NLP on Transformers 101

(基于Transformer的NLP智能对话机器人实战课程)


本课程以Transformer架构为基石、萃取NLP中最具有使用价值的内容、围绕手动实现工业级智能业务对话机器人所需要的全生命周期知识点展开,学习完成后不仅能够从算法、源码、实战等方面融汇贯通NLP领域NLU、NLI、NLG等所有核心环节,同时会具备独自开发业界领先智能业务对话机器人的知识体系、工具方法、及参考源码,成为具备NLP硬实力的业界Top 1%人才。


课程特色:


101章围绕Transformer而诞生的NLP实用课程

5137个围绕Transformers的NLP细分知识点

大小近1200个代码案例落地所有课程内容

10000+行纯手工实现工业级智能业务对话机器人

在具体架构场景和项目案例中习得AI相关数学知识

以贝叶斯深度学习下Attention机制为基石架构整个课程

五大NLP大赛全生命周期讲解并包含比赛的完整代码实现


相关实践学习
阿里巴巴智能语音交互技术与应用
智能语音交互,是基于语音识别、语音合成、自然语言理解等技术,为企业在多种实际应用场景下,赋予产品“能听、会说、懂你”式的智能人机交互体验。适用于多个应用场景中,包括智能问答、智能质检、法庭庭审实时记录、实时演讲字幕、访谈录音转写等。 本课程主要讲解智能语音相关技术,包括语音识别、人机交互、语音合成等。  
目录
相关文章
|
9月前
|
存储 人工智能
GPT-4尚未出现自我意识!这项研究用上帝之点解读,迈向AGI局限无法克服
【6月更文挑战第21天】研究人员构建了智能与意识的“飞行模型”,定义了全知全能代理(Ω点)和绝对零代理(α点),以此评估AI的智能水平。目前AI接近人类智能但缺乏自我意识。该模型为理解AI的智能和意识提供新视角,但也因理论概念的实证支持不足及忽视环境影响的多样性而受到批评。[DOI: 10.13140/RG.2.2.24518.28484]
119 6
|
6月前
|
安全 搜索推荐 vr&ar
脑机接口:人类认知与技术的深度融合
【9月更文挑战第13天】脑机接口(BMI)技术正快速发展,成为连接人类认知与高科技领域的桥梁。本文从定义、原理、应用及挑战等方面全面探讨了这一前沿技术。脑机接口通过测量大脑活动,转化为外部设备的控制信号,已在疾病治疗、运动功能恢复、认知改善及AR/VR等领域展现巨大潜力。然而,技术难度、伦理安全及成本问题仍需克服。未来,随着技术进步,脑机接口有望更广泛地应用于日常生活,引领科技新方向。
|
8月前
|
Web App开发
生成式模型不只会模仿!哈佛、UCSB等最新成果:性能可超越训练集专家水平
【7月更文挑战第23天】研究人员从哈佛大学、UC Santa Barbara等机构展示了生成式模型的新突破:在特定任务上实现超越训练集专家水平的性能。通过“低温度采样”减少模型不确定性,实验中一个名为ChessFormer的模型在下棋任务上表现出了超越性,即性能超过了训练集中专家的平均水平。这项工作揭示了生成式模型在特定条件下实现超越的可能性,为该领域的研究和应用提供了新视角。[论文](https://arxiv.org/pdf/2406.11741)
51 2
|
8月前
|
机器学习/深度学习 自然语言处理
大模型概念问题之大模型在生成文本方面有哪些革命性突破
大模型概念问题之大模型在生成文本方面有哪些革命性突破
|
9月前
|
机器学习/深度学习 计算机视觉
【机器学习】LoFTR:革命性图像特征批评技术等领跑者
【机器学习】LoFTR:革命性图像特征批评技术等领跑者
150 1
|
10月前
|
人工智能 量子技术 云计算
拥抱不确定性:技术演进中的适应性思维
在技术的不断迭代与演进中,不确定性是一个常驻的因素。本文通过探讨技术发展过程中的不确定性特征,强调适应性思维的重要性,并提出一系列策略以促进个人和组织在面对技术变革时的心理和技术准备。文章基于实际案例分析,阐述了如何在快速变化的技术领域中保持灵活性和竞争力,并给出了对未来技术趋势预判的见解。
141 4
|
10月前
|
自然语言处理 搜索推荐 语音技术
大模型技术的分化与应用
【1月更文挑战第14天】大模型技术的分化与应用
126 2
大模型技术的分化与应用
|
10月前
|
编解码 人工智能 AI芯片
|
机器学习/深度学习 存储 人工智能
AIGC背后的技术分析 | 构建神经网络
你会羡慕机器的强大算力吗?事实上,我们的大脑也能做到很多普通计算机无法做到的事情。 例如,我们只需要瞥一眼照片中的人,就能快速识别出这个人我们是不是认识。如果是,那么这个人的各种性格特征以及关于他的种种故事也会出现在我们的脑海中;如果不是,我们也能给出对这个人的第一印象描述。
275 0
AIGC背后的技术分析 | 构建神经网络
|
机器学习/深度学习 人工智能 决策智能
重新审视AI,神经网络中概念符号涌现的发现与证明(1)
重新审视AI,神经网络中概念符号涌现的发现与证明
154 0