看看小秘籍?面试经验系列——如何谈薪资

简介: 谈论薪资的方式

image.png

不再赘述网上可以查到的废话了;


 直接说我自己经验之谈吧;首先如果到了谈论薪资的阶段,想必大家面试发挥的也还都不错,所以自信一点,要表现出很有底气的样子;

 谈论薪资分为现场谈和电话中与hr聊,不管是电话还是现场,先提前了解目前岗位的薪资范围,要一个在薪资范围内比你自己期望的高出1-2k的薪资,给双方一个讨价还价的空间,如果hr明确表示出为难,说明可能会有其他人选或者薪资给的很有限制,那么我们可以适当松一下口径,总之保持一个爷有offer了的胸有成竹状态,让hr拿捏不了你。


 其次呢要注意待遇中的一些细节,首先是最重要的五险一金,问清楚按什么基数来交,最好的是按照全额缴纳,不要想着扣钱多就亏了,你出钱多,公司比你出的还多,最后这些加在一起都是你的;接着是年终奖部分,一定要问清楚是固定几个月的奖金还是按照绩效来发,最后有股权当然是锦上添花了,不过以我的经验来看都是大饼没有什么发财希望的。其他的一些,包括车补房补饭补,加班这些都要问清楚,到底怎么选择就看各位自己了;


 希望大家发财奥!


目录
相关文章
|
6月前
|
存储 分布式计算 大数据
HBase分布式数据库关键技术与实战:面试经验与必备知识点解析
【4月更文挑战第9天】本文深入剖析了HBase的核心技术,包括数据模型、分布式架构、访问模式和一致性保证,并探讨了其实战应用,如大规模数据存储、实时数据分析及与Hadoop、Spark集成。同时,分享了面试经验,对比了HBase与其他数据库的差异,提出了应对挑战的解决方案,展望了HBase的未来趋势。通过Java API代码示例,帮助读者巩固理解。全面了解和掌握HBase,能为面试和实际工作中的大数据处理提供坚实基础。
410 3
|
6月前
|
SQL 分布式计算 监控
Sqoop数据迁移工具使用与优化技巧:面试经验与必备知识点解析
【4月更文挑战第9天】本文深入解析Sqoop的使用、优化及面试策略。内容涵盖Sqoop基础,包括安装配置、命令行操作、与Hadoop生态集成和连接器配置。讨论数据迁移优化技巧,如数据切分、压缩编码、转换过滤及性能监控。此外,还涉及面试中对Sqoop与其他ETL工具的对比、实际项目挑战及未来发展趋势的讨论。通过代码示例展示了从MySQL到HDFS的数据迁移。本文旨在帮助读者在面试中展现Sqoop技术实力。
490 2
|
6月前
|
监控 负载均衡 Cloud Native
ZooKeeper分布式协调服务详解:面试经验与必备知识点解析
【4月更文挑战第9天】本文深入剖析ZooKeeper分布式协调服务原理,涵盖核心概念如Server、Client、ZNode、ACL、Watcher,以及ZAB协议在一致性、会话管理、Leader选举中的作用。讨论ZooKeeper数据模型、操作、会话管理、集群部署与管理、性能调优和监控。同时,文章探讨了ZooKeeper在分布式锁、队列、服务注册与发现等场景的应用,并在面试方面分析了与其它服务的区别、实战挑战及解决方案。附带Java客户端实现分布式锁的代码示例,助力提升面试表现。
579 2
|
6月前
|
数据采集 消息中间件 监控
Flume数据采集系统设计与配置实战:面试经验与必备知识点解析
【4月更文挑战第9天】本文深入探讨Apache Flume的数据采集系统设计,涵盖Flume Agent、Source、Channel、Sink的核心概念及其配置实战。通过实例展示了文件日志收集、网络数据接收、命令行实时数据捕获等场景。此外,还讨论了Flume与同类工具的对比、实际项目挑战及解决方案,以及未来发展趋势。提供配置示例帮助理解Flume在数据集成、日志收集中的应用,为面试准备提供扎实的理论与实践支持。
272 1
|
6月前
|
XML 分布式计算 监控
Oozie工作流管理系统设计与实践:面试经验与必备知识点解析
【4月更文挑战第9天】本文详述了Oozie工作流管理系统的核心概念,包括安装配置、Workflow XML、Action、Coordinator和Bundle XML定义。此外,讨论了工作流设计实践,如监控调试、自动化运维,并对比了Oozie与其他工作流工具的差异。文中还分享了面试经验及解决实际项目挑战的方法,同时展望了Oozie的未来发展趋势。通过学习,读者能提升Oozie技术能力,为面试做好充分准备。
142 0
|
6月前
|
SQL 存储 分布式计算
Hive数据仓库设计与优化策略:面试经验与必备知识点解析
本文深入探讨了Hive数据仓库设计原则(分区、分桶、存储格式选择)与优化策略(SQL优化、内置优化器、统计信息、配置参数调整),并分享了面试经验及常见问题,如Hive与RDBMS的区别、实际项目应用和与其他组件的集成。通过代码样例,帮助读者掌握Hive核心技术,为面试做好充分准备。
585 0
|
6月前
|
机器学习/深度学习 SQL 分布式计算
Spark核心原理与应用场景解析:面试经验与必备知识点解析
本文深入探讨Spark核心原理(RDD、DAG、内存计算、容错机制)和生态系统(Spark SQL、MLlib、Streaming),并分析其在大规模数据处理、机器学习及实时流处理中的应用。通过代码示例展示DataFrame操作,帮助读者准备面试,同时强调结合个人经验、行业趋势和技术发展以展现全面的技术实力。
569 0
|
6月前
|
消息中间件 监控 大数据
Kafka消息队列架构与应用场景探讨:面试经验与必备知识点解析
【4月更文挑战第9天】本文详尽探讨了Kafka的消息队列架构,包括Broker、Producer、Consumer、Topic和Partition等核心概念,以及消息生产和消费流程。此外,还介绍了Kafka在微服务、实时数据处理、数据管道和数据仓库等场景的应用。针对面试,文章解析了Kafka与传统消息队列的区别、实际项目挑战及解决方案,并展望了Kafka的未来发展趋势。附带Java Producer和Consumer的代码示例,帮助读者巩固技术理解,为面试做好准备。
646 0
|
6月前
|
Android开发 缓存 双11
android的基础ui组件,Android开发社招面试经验
android的基础ui组件,Android开发社招面试经验
android的基础ui组件,Android开发社招面试经验
|
6月前
|
数据采集 XML 程序员
最新用Python做垃圾分类_python垃圾分类代码用key和format,5年经验Python程序员面试27天
最新用Python做垃圾分类_python垃圾分类代码用key和format,5年经验Python程序员面试27天
最新用Python做垃圾分类_python垃圾分类代码用key和format,5年经验Python程序员面试27天

相关实验场景

更多
下一篇
无影云桌面