数据仓库常见建模方法与大数据领域建模实例综述

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 数据仓库常见建模方法与大数据领域建模实例综述

大家好,我是云祁,好久不见~


今天来和大家聊聊数仓常见的一些建模方法和具体的实例演示,一起来看看吧。


一、为什么需要数据建模?


在开始今天的话题之前,我们不妨思考下,到底为什么需要进行数据建模?


随着从IT时代到DT时代的跨越,数据开始出现爆发式的增长,这当中产生的价值也是不言而喻。如何将这些数据进行有序、有结构地分类组织存储,是我们所有数据从业者都要面临的一个挑战。


如果把数据看作图书馆里的书,我们希望看到它们在书架上分门别类地放置,而不是乱糟糟的堆砌在一起。


大数据的数仓建模正是通过建模的方法,更好的组织、存储数据,以便在性能、成本、效率和数据质量之间找到最佳平衡点,一般我们会从以下面四点考虑:


性能:能够快速查询所需的数据,减少数据I/O的吞吐。


成本:减少不必要的数据冗余,实现计算结果的复用,降低大数据系统中的存储成本和计算成本。


效率:改善用使用数据的体验,提高使用效率。


质量:改善数据统计口径的不一致性,减少数据计算错误的可能性,提供高质量的、一致的数据访问平台。


因此,毋庸置疑,大数据系统、数据平台都需要数据模型方法来帮助更好的组织和存储数据,数据建模的工作,也正是围绕上述四个指标取得最佳的平衡而努力。


二、从 OLTP 和 OLAP 系统的区别看模型方法论的选择


OLTP系统通常面向的主要数据操作是随机读写,主要采用3NF的实体关系模型存储数据,从而在事务处理中解决数据的冗余和一致性问题。


OLAP系统面向的主要数据操作是批量读写,事务处理中的一致性不是OLAP所关注的,其主要关注数据的整合,以及在一次性的复杂大数据查询和处理的性能,因此它需要采用不同的建模方法,例如维度建模。


如果大家想进一步了解 OLAP系统,可以学习这篇文章: 关于OLAP数仓,这大概是史上最全面的总结!


三、典型的数据仓库建模方法论


数据仓库本质是从数据库衍生出来的,所以数据仓库的建模也是不断衍生发展的。


从最早的借鉴关系型数据库理论的范式建模,到逐渐提出维度建模等等,越往后建模的要求越高,越需满足3NF、4NF等。但是对于数据仓库来说,目前主流还是维度建模,会夹杂着范式建模。


数据仓库建模方法论可分为:E-R模型、维度模型、Data Vault模型、Anchor模型。



3.1 E-R模型


将事物抽象为“实体”、“属性”、“关系”来表示数据关联和事物描述,这种对数据的抽象建模通常被称为E-R实体关系模型。


数据仓库之父 Bill Inmon 提出的建模方法,从全企业的高度设计一个3NF模型,用实体关系(Entity Relationship)模型来描述企业业务,满足3NF。


数据仓库的3NF与OLTP系统中的3NF的区别在于,它是站在企业角度面向主题的抽象,而不是针对某个具体的业务流程。


采用 E-R模型建设数据仓库模型的出发点是整合数据,对各个系统的数据以整个企业角度按主题进行相似的组合和合并,并进行一致性处理,为数据分析决策服务,但是并不能直接用于分析决策。


作为一种标准的数据建模方案,它的实施周期非常长,一致性和扩展性比较好,能经得起时间的考验。但是随着企业数据的高速增长、复杂化,数仓如果全部使用E-R模型进行建模就显得越来越不适合现代化复杂、多变的业务组织,因此一般只有在数仓底层ODS、DWD会采用E-R关系模型进行设计。


E-R建模步骤分为三个阶段:


高层模型:一个高度抽象的模型,描述主要的主题以及主题间的关系,用于描述企业的业务总体概况。


中层模型:在高层模型的基础上,细化主题的数据项。


物理模型(底层模型):在中层模型的基础上,考虑物理存储,同时基于性能和平台特点进行物理属性的设计,也可能做一些表的合并、分区的设计等。



E-R模型在实践中最典型的代表是 Teradata 公司基于金融业务发布的 FS-LDM (Financial Services Logical Data Model ),它通过对金融业务的高度抽象和总结,将金融业务划分为10大主题,企业基于此模型适当调整和扩展就能快速实施落地。


3.2 维度模型


维度模型是数据仓库领域 Ralph Kimball 大师倡导的,是数据仓库工程领域最流行的数仓建模经典。


维度建模以分析决策的需求出发构建模型,构建的数据模型为分析需求服务,因此它重点解决用户如何更快速完成分析需求,同时还有较好的大规模复杂查询的响应性能。


其中典型的代表就是使用星型模型,以及在一些特殊场景下使用的雪花模型。



其设计主要分为以下几个步骤:


1.选择需要进行分析决策的业务过程。业务过程可以是单个业务事件,比如交易的支付、退款等;也可以是某个事件的状态,比如当前账户的余额;还有就是一系列相关业务事件组成的业务流程,具体需要我们分析的是某些事件发生的情况,还是当前状态,或是事件流转效率。


2.选择粒度。在事件分析中,我们要预判所有分析需要细分的程度,从而决定选择的粒度。粒度是维度的一个组合。


3.识别维表。选择好粒度之后,就需要基于这个粒度来设计维表,包括维度属性,用于分析时进行分组和筛选。


4.选择事实。确定分析需要衡量的指标。

在 Ralph Kimball 提出对数据仓库维度建模,我们将数据仓库中的表划分为事实表、维度表两种类型。


针对维度建模中事实表和维度表的设计,之前有详细介绍过,感兴趣的同学可以看:维度建模技术实践——深入事实表 、维度建模的灵魂所在——维度表设计。


在这里,我就以常见的电商场景为例:在一次购买的事件中,涉及主体包括客户、商品、商家,产生的可度量值会包括商品数量、金额、件数等。


事实表根据粒度的角色划分不同,可分为事务事实表、周期快照事实表、累积快照事实表等。


1.事务事实表:用于承载事务数据,任何类型的事件都可以被理解为一种事务,比如商家在交易过程中的常见订单、买家付款,物流过程中的揽货、发货、签收,退款中的申请退款。


2.周期快照事实表:快照事实表以预定的间隔采样状态度量,比如自然年至今或者历史至今的下单金额、支付金额、支付买家数、支付商品件数等等状态度量。


3.累计快照事实表:数据不断更新,选取多业务过程日期。用来记录具有时间跨度的业务处理过程的整个过程的信息,每个生命周期一行,通常这类事实表比较少见。


我们继续就上述的电商场景,聊聊在维表设计时需要关注的一些东西:


1.缓慢变化维度:例如会员表的手机号、地址、生日等属性。


2.退化维度 :订货单表的订单编号、物流表的物流编号等。


3.雪花维度:满足第三范式的维度关系结构。


4.非规范化扁平维度:商品维表众中产品、品牌、类目、品类等。


5.多层次维度:地区维度的省、市、区县,商品的类目层级。


6.角色维度:日期维度在物流中扮演发货日期、送货日期、收获日期等不同角色。


接下来就是针对维度建模按照数据的组织类型,可以划分为星型模型、雪花模型、星座模型。


1.星型模型:星型模型主要是维表和事实表,以事实表为中心,所有维度直接关联在事实表上,呈星型分布。



2. 雪花模型,在星型模型的基础上,维度表上又关联了其他维度表。这种模型维护成本高,性能方面会差一些。



3. 星座模型,是对星型模型的扩展延伸,多张事实表共享维度表。实际上数仓模型建设后期,大部分维度建模都是星座模型。



简单总结下就是:


1.星型模型和雪花模型主要区别就是对维度表的拆分。


2.对于雪花模型,维度表的涉及更加规范,一般符合3NF,有效降低数据冗余,维度表之间不会相互关联。


3.星型模型,一般采用降维的操作,反规范化,不符合3NF,通过利用冗余来避免模型过于复杂,提高易用性和分析效率,效率相对较高。


3.3 DataVault 模型


Data Vault 是 Dan Linstedt 发起创建的一种模型,它是 E-R 模型的衍生,其设计的出发点也是为了实现数据的整合,但不能直接用于数据分析决策。


它强调建立一个可审计的基础数据层,也就是强调数据的历史性、可追溯性和原子性,而不要求对数据进行过度的一致性处理和整合。


同时它基于主题概念将企业数据进行结构化组织,并引入了更进一步的范式处理来优化模型,以应对源系统变更的扩展性。 Data Vault 型由以下几部分组成:


1.Hub - 中心表:是企业的核心业务实体,由实体 Key、数仓序列代理键、装载时间、数据来源组成,不包含非键值以外的业务数据属性本身。


2.Link - 链接表:代表 Hub 之间的关系。这里与 ER 模型最大的区别是将关系作为一个独立的单元抽象,可以提升模型的扩展性。它可以直接描述 1:1、1:2和n:n的关系,而不需要做任何变更。它由 Hub的代理键、装载时间、数据来源组成。


3.Satellite - 卫星表:数仓中数据的主要载体,包括对链接表、中心表的数据描述、数值度量等信息。



Data Vault 模型比 E-R 模型更容易设计和产出,它的 ETL 加工可实现配置化。我们可以将 Hub 想象成人的骨架,那么 Link 就是连接骨架的韧带,而 SateIIite 就是骨架上面的血肉。


3.4 Anchor 模型


Anchor 对 Data Vault 模型做了进一步的规范化处理,它的核心思想是所有的扩展只是添加而不是修改,因此将模型规范到6NF,基本变成了 k-v 结构化模型。


1.Anchors :类似于 Data Vault 的 Hub ,代表业务实体,且只有主键。


2.Attributes :功能类似于 Data Vault 的 Satellite,但是它更加规范化,将其全部 k-v 结构化, 一个表只有一个 Anchors 的属性描述。


3.Ties :就是 Anchors 之间的关系,单独用表来描述,类似于 Data Vault 的 Link ,可以提升整体模型关系的扩展能力。


4.Knots :代表那些可能会在 Anchors 中公用的属性的提炼,比如性别、状态等这种枚举类型且被公用的属性。


由于过度规范化,使用中牵涉到太多的Join操作,这里我们就仅作了解。


四、总结


以上为四种基本的建模方法,目前主流建模方法为: E-R模型、维度模型。


E-R模型通常用于OLTP数据库建模,应用到构建数仓时就更偏向于数据整合,站在企业整体考虑,将各个系统的数据按相似性一致性、合并处理,为数据分析、决策服务,但并不便于直接用来支持分析。


维度建模是面向分析场景而生,针对分析场景构建数仓模型;重点关注快速、灵活的解决分析需求,同时能够提供大规模数据的快速响应性能。针对性强,主要应用于数据仓库构建和OLAP引擎低层数据模型。


数据仓库模型的设计是灵活的,不会局限于某一种模型,需要以实际的需求场景为导向,需要兼顾灵活性、可扩展性以及技术可靠性及实现成本。


我是「云祁」,一枚热爱技术、会写诗的大数据开发猿,欢迎大家关注呀!


Respect ~

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
26天前
|
存储 机器学习/深度学习 大数据
量子计算与大数据:处理海量信息的新方法
【10月更文挑战第31天】量子计算凭借其独特的量子比特和量子门技术,为大数据处理带来了革命性的变革。相比传统计算机,量子计算在计算效率、存储容量及并行处理能力上具有显著优势,能有效应对信息爆炸带来的挑战。本文探讨了量子计算如何通过量子叠加和纠缠等原理,加速数据处理过程,提升计算效率,特别是在金融、医疗和物流等领域中的具体应用案例,同时也指出了量子计算目前面临的挑战及其未来的发展方向。
|
1月前
|
SQL 消息中间件 分布式计算
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
大数据-115 - Flink DataStream Transformation 多个函数方法 FlatMap Window Aggregations Reduce
36 0
|
3月前
|
机器学习/深度学习 数据采集 大数据
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
本文详细介绍了2022年第三届MathorCup高校数学建模挑战赛大数据竞赛赛道B的题目——北京移动用户体验影响因素研究,提供了问题一的建模方案、代码实现以及相关性分析,并对问题二的建模方案进行了阐述。
94 0
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题一建模方案及代码实现详解
|
3月前
|
存储 机器学习/深度学习 数据采集
深入解析大数据核心概念:数据平台、数据中台、数据湖与数据仓库的异同与应用
深入解析大数据核心概念:数据平台、数据中台、数据湖与数据仓库的异同与应用
|
3月前
|
消息中间件 存储 大数据
大数据-数据仓库-实时数仓架构分析
大数据-数据仓库-实时数仓架构分析
141 1
|
3月前
|
机器学习/深度学习 设计模式 人工智能
面向对象方法在AIGC和大数据集成项目中的应用
【8月更文第12天】随着人工智能生成内容(AIGC)和大数据技术的快速发展,企业面临着前所未有的挑战和机遇。AIGC技术能够自动产生高质量的内容,而大数据技术则能提供海量数据的支持,两者的结合为企业提供了强大的竞争优势。然而,要充分利用这些技术,就需要构建一个既能处理大规模数据又能高效集成机器学习模型的集成框架。面向对象编程(OOP)以其封装性、继承性和多态性等特点,在构建这样的复杂系统中扮演着至关重要的角色。
66 3
|
3月前
|
机器学习/深度学习 数据采集 大数据
2022年第三届MathorCup高校数学建模挑战赛——大数据竞赛 赛道B 北京移动用户体验影响因素研究 问题二建模方案及代码实现详解
本文详细介绍了2022年第三届MathorCup高校数学建模挑战赛大数据竞赛赛道B的问题二的建模方案和Python代码实现,包括数据预处理、特征工程、模型训练以及预测结果的输出,旨在通过数据分析与建模方法帮助中国移动北京公司提升客户满意度。
75 2
|
3月前
|
存储 SQL 分布式计算
MaxCompute 在大规模数据仓库中的应用
【8月更文第31天】随着大数据时代的到来,企业面临着海量数据的存储、处理和分析挑战。传统的数据仓库解决方案在面对PB级甚至EB级的数据规模时,往往显得力不从心。阿里云的 MaxCompute(原名 ODPS)是一个专为大规模数据处理设计的服务平台,它提供了强大的数据存储和计算能力,非常适合构建和管理大型数据仓库。本文将探讨 MaxCompute 在大规模数据仓库中的应用,并展示其相对于传统数据仓库的优势。
127 0
|
3月前
|
SQL 分布式计算 数据可视化
基于Hadoop的大数据可视化方法
【8月更文第28天】在大数据时代,有效地处理和分析海量数据对于企业来说至关重要。Hadoop作为一个强大的分布式数据处理框架,能够处理PB级别的数据量。然而,仅仅完成数据处理还不够,还需要将这些数据转化为易于理解的信息,这就是数据可视化的重要性所在。本文将详细介绍如何使用Hadoop处理后的数据进行有效的可视化分析,并会涉及一些流行的可视化工具如Tableau、Qlik等。
123 0
|
4月前
|
分布式计算 大数据 关系型数据库
MaxCompute产品使用合集之如何实现类似mysql实例中的数据库功能
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
下一篇
无影云桌面