《驾驭大数据》一8.6 本章小结

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:

本节书摘来异步社区《驾驭大数据》一书中的第8章,第8.6节,作者: 【美】Bill Franks 译者: 黄海 , 车皓阳 , 王悦 , 等 责编: 杨海玲,更多章节内容可以访问云栖社区“异步社区”公众号查看。

8.6 本章小结

驾驭大数据
以下是本章的重点内容。

  • 我们在招聘分析专家时,要以技术和教育背景作为起点,而不是最终要评判标准。
  • 我们要招聘不同行业背景的分析专家,要借鉴其他行业的游戏规则。
  • 评判优秀的分析专家时,承诺、创造力、商业头脑、演讲能力与沟通技巧、直觉都是关键因素,但这些因素往往会被人们认为并不重要。
  • 只有一小部分具备技术能力的人,能够具备前面描述的那些非技术要素。
  • 优秀的分析专家关心的是如何完善业务,而非使之完美。知道分析结果何时已经足以支撑业务决策是非常重要的,然后着手解决下一个问题。
  • 优秀的分析专家会把所需的数据准确度和决策粒度完美地结合起来。不完美的数据仍然可以有效地回答许多问题。
  • 如今的离岸分析太过关注技术技能。我们要需要那些优秀的本地分析专家一起协同工作才行。
  • 虽然说得到可靠的结果很重要,但项目成败至少有50%的因素取决于分析专家的演讲,以及他们如何把分析结果传达给不懂技术的项目投资方。
  • 很多机构都在开发分析认证项目。时间会告诉我们认证项目会不会被市场接受,认证只是评估候选人的起点。
  • 最优秀的分析专家不仅是掌握数据的科学家还是数据处理的艺术家,这一点足以让很多人惊讶。不要低估艺术才华对于优秀分析专家的重要程度。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
4月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
142 3
|
4月前
|
机器学习/深度学习 数据可视化 大数据
驾驭股市大数据:Python实战指南
【10月更文挑战第1天】随着信息技术的发展,投资者现在能够访问到前所未有的海量金融数据。本文将指导您如何利用Python来抓取当前股市行情的大数据,并通过分析这些数据为自己提供决策支持。我们将介绍从数据获取到处理、分析以及可视化整个流程的技术方法。
290 2
|
7月前
|
机器学习/深度学习 存储 分布式计算
驾驭数据洪流:大数据处理的技术与应用
大数据处理不仅是信息技术领域的一个热门话题,也是推动各行各业创新和发展的重要力量。随着技术的进步和社会需求的变化,大数据处理将继续发挥其核心作用,为企业创造更多的商业价值和社会贡献。未来,大数据处理将更加注重智能化、实时性和安全性,以应对不断增长的数据挑战。
|
7月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【7月更文挑战第22天】在大数据领域,Python算法效率至关重要。本文深入解析时间与空间复杂度,用大O表示法衡量执行时间和存储需求。通过冒泡排序(O(n^2)时间,O(1)空间)与快速排序(平均O(n log n)时间,O(log n)空间)实例,展示Python代码实现与复杂度分析。策略包括算法适配、分治法应用及空间换取时间优化。掌握这些,可提升大数据处理能力,持续学习实践是关键。
163 1
|
7月前
|
机器学习/深度学习 数据采集 大数据
驾驭大数据洪流:Pandas与NumPy在高效数据处理与机器学习中的核心作用
【7月更文挑战第13天】在大数据时代,Pandas与NumPy是Python数据分析的核心,用于处理复杂数据集。在一个电商销售数据案例中,首先使用Pandas的`read_csv`加载CSV数据,通过`head`和`describe`进行初步探索。接着,数据清洗涉及填充缺失值和删除异常数据。然后,利用`groupby`和`aggregate`分析销售趋势,并用Matplotlib可视化结果。在机器学习预处理阶段,借助NumPy进行数组操作,如特征缩放。Pandas的数据操作便捷性与NumPy的数值计算效率,共同助力高效的数据分析和建模。
149 3
|
9月前
|
大数据 数据管理 分布式数据库
探索 HBase GUI 工具,助您轻松驾驭大数据世界!
从此告别繁琐,迎接大数据时代的新利器! #HBase #GUI #数据管理 #工具分享
368 2
探索 HBase GUI 工具,助您轻松驾驭大数据世界!
|
分布式计算 大数据