本节书摘来异步社区《驾驭大数据》一书中的第8章,第8.1节,作者: 【美】Bill Franks 译者: 黄海 , 车皓阳 , 王悦 , 等 责编: 杨海玲,更多章节内容可以访问云栖社区“异步社区”公众号查看。
8.1 哪些人是分析专家
驾驭大数据
被冠以分析专家头衔的人会有很多不同的称呼。以往最常见的称呼是分析专家、数据挖掘工程师、预测建模工程师以及统计人员。最近,数据科学家这个称呼比较流行,尤其是指那些使用MapReduce工具并分析大数据的人。本书将上述所有人全都认为是分析专家。
事实上,上述分析专家虽然头衔多种多样,但是他们技能的相似程度会大于差异程度。这些分析人员的日常工作都是利用数据解决业务问题。不同类型的分析专家所使用的工具或算法可能会有所不同,但优秀的分析专家会根据需求在不同领域之间自由徜徉。如本章所述,优秀的分析专家之所以与众不同,绝不是因为他们使用了不同的工具、算法或数据。
需要特别指出的是,与传统意义的分析专家相比,数据科学家这个新的群体并没有什么特殊之处。就像以往分析专家关心的是找到新颖有效的方法利用数据解决业务问题一样,数据科学家也是如此。事实上,数据科学家喜欢使用不同的工具、编程语言和数据集,这种做法并没有让他们的目标和意图有所不同。他们使用的都是相同的技能,具备相同的竞争力。
唯一阻碍传统意义上的分析专家成为优秀数据科学家的是培训和学习,反之亦如此。有了一定的基础,任何优秀的分析专家学习一门新的语言、一种新的工具,都不会有什么问题。任何优秀的分析专家都会迫不及待地抓住机会,去了解新的数据源以及它们的使用方法。
凡是认为自己是分析专家的人,无论他们被称为数据科学家还是分析专家,都会认同本章的观点。跟这些分析专家进行交流的那些人肯定也会认同这些观点。分析专家能够理解他们彼此之间有很多共同之处,这一点对他们来说非常重要。这些特质和行为正是所有优秀分析专家的特征。