《社会调查数据管理——基于Stata 14管理CGSS数据》一3.5 中国综合社会调查

简介:

本节书摘来自异步社区《社会调查数据管理——基于Stata 14管理CGSS数据》一书中的第3章,第3.5节,作者 唐丽娜,更多章节内容可以访问云栖社区“异步社区”公众号查看

3.5 中国综合社会调查

中国综合社会调查(China General Social Survey,CGSS)始于2003年,是一项大型学术研究调查项目。CGSS发源于美国的GSS(General Social Survey,GSS),GSS是美国民意调查中心(National Opinion Research Center, NORC)运行时间最长的一个调查项目,该调查项目在全世界都享有盛誉,是国际社会调查界的旗舰。自1972年开始,该项目旨在通过收集当下美国社会的数据,来考察美国的社会变迁,研究美国社会日益增加的复杂性,解释人们的态度、行为和特征的变化趋势,考察整个社会的结构和功能,以及次级群体在社会中扮演的角色,进行国际比较。GSS的另一个目的是生产出高质量的数据,而且所有的学者、政策制定者及其他相关人员都能以最低的成本和等待时间来获取GSS数据(http://gss.norc.org/)。在美国,除了美国人口普查数据,GSS数据是社会科学界使用频率最高的一个数据来源。

为了给社会科学界提供一项高质量的社会调查数据,中国人民大学社会学系的李路路教授和当时在香港科技大学的边燕杰教授决心做中国自己的GSS,为学术界提供一个全国范围的、随机抽样的、高质量的调查数据。自2003年开始截止到本书出版前,一共完成11次调查。在第一个周期里,共完成5年调查,分别是2003、2004、2005、2006和2008年,除2004年的数据外,剩下4年的数据都已向全社会免费公开,用户可以到中国国家调查数据库(China National Survey Data Archive,CNSDA)注册下载。第二个周期计划从2010~2019年,为期10年,截止到2015年共完成6次调查,其中2010、2011、2012、2013共4年的数据也已经在CNSDA的网站上免费发布。

CGSS采用多阶段、分层次、随机抽样方法,获取的数据在全国范围具有代表性,但不能在省份这个层面上有代表性,因此不能用CGSS数据做31个省份之间的比较。

CGSS的问卷由两个部分构成:主体模块(primary module,即A部分)和主题模块(topic module,即B-Z部分)。历年的调查问卷中都包含A部分,不同之处在主题模块,见表3-4。


b01f478acad4fe000b1ac4590434af87e69c3fe6


e63f80ee2ad50f2c929590870152be6685a83515


d6e6a7b224fa9fd7b4287b49bd35c685c8710a8e


00d7a78641901657f1976af4bb2e384718d4d7ea


8b9a30dfb680e90a8b49bbf611d2818239c401c6


f39b76fb8a010cb4833a3eb05d5f3c861c514f69


071ef6bc7b0c77ac69c1d812cb1c9a9c5096bba0


972d2eeab7e602ff6c201c25954b3b31496f5716


8b85b26cb77776880fd9e4ea80800c1cbd615bea


28fe8a640a84341d3493206b02f1f76516546507


7ef95fa335221c64109dc057a23cbdd800ebe18d

使用CGSS数据的注意事项:

(1)样本代表性。CGSS采用多阶分层随机抽样方法,收集上来的数据只能用于推论全国,无法用于推论各省份。切记:不要用CGSS数据做分省份比较研究。

(2)样本量。同一年度的CGSS数据,在不同模块上的样本量可能不一样。CGSS的问卷结构是:主体模块 + 主题模块。其中主体模块是全样本数据,但主题模块的样本只是总样本中的一个子样本。也就是说,在全部调查对象中,所有人都会回答主体模块的问题,但只有一部分人会回答主题模块的问题(如CGSS2006的城乡居民数据有10151条数据,EASS模块——家庭模块——则只有3208条数据),而且不同的主题模块回答的人数也有微小差异(如CGSS2010的城乡居民数据有11783条数据,回答M部分——健康模块——的样本有3866个,而回答N部分——宗教模块——的样本有4231个)。

(3)变量名。为方便查阅数据,CGSS历年数据的变量名都以其对应的问卷中的题号为命名基准,这样的命名方式也方便用户把数据和问卷对应起来。

(4)职业和行业编码。为了更加准确地测量调查对象的行业和职业,对这两个变量CGSS采用间接测量的方法,具体操作方法是:在历年调查中,行业和职业都是开放题,由访问员把被访者从事的行业相关信息和职业相关信息填入相应的空格上,如下所示:

A59d. 您目前工作的具体职业是:

    具体职业名称[              ]

    具体工作内容[              ]

          [              ]

根据收集的文本资料,基于ISCO88,由至少2名专业人员进行编码,把文本资料转换成定量资料,以便研究者使用和分析。CGSS 项目组只发布编好码的行业和职业,不公布相应的开放题。

[1] 中国的小学数据课本中就包含了统计、调查等方面的基础知识。

[2]马丁•丹斯考姆. 做好社会研究的10个关键[M]. 杨子江,译. 北京:北京大学出版社,2008.

[3]这4个效度的详细内容,请参阅《社会研究方法(第11版)》的第146~147页,【美】艾尔•芭比著,邱泽奇译. 华夏出版社,2014

[4]//是给stata命令本身添加注释的一种方法,如果想给某条命令加注释,就可以在这条命令后面输入空格+//+注释。

[5]星号+注释是一种给do文件加注释的方法。

[6]不同版本的Stata能保存的最大字符数有差异,比如在Stata 12中,字符型变量最多只能保存244个字符,但是在Stata14中,字符型变量最多能保存2000000000个字符,而且还能保存二进制数。用户在创建变量时一定要注意,不要因为存储空间不足导致字符型数据丢失。

[7]通常的叫法是:if条件,in范围。

[8]在Stata的命令中,井号“#”代表数字。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
相关文章
|
4月前
|
数据采集 存储 安全
数据治理≠数据管理!90%的企业都搞错了重点!
在数字化转型中,数据不一致、质量差、安全隐患等问题困扰企业。许多组织跳过基础的数据管理,直接进行数据治理,导致方案难以落地。数据管理涵盖数据生命周期中的采集、存储、处理等关键环节,决定了数据是否可用、可靠。本文详解数据管理的四大核心模块——数据质量、元数据、主数据与数据安全,并提供构建数据管理体系的四个阶段:评估现状、确定优先级、建立基础能力与持续改进,助力企业夯实数据基础,推动治理落地。
|
8月前
|
存储 数据管理 数据格式
数据治理 vs. 数据管理:别再傻傻分不清!
数据治理 vs. 数据管理:别再傻傻分不清!
428 10
|
4月前
|
数据采集 存储 SQL
数据管理四部曲:元数据管理、数据整合、数据治理、数据质量管控
老张带你搞定企业数据管理难题!数据找不到、看不懂、用不好?关键在于打好元数据管理、数据整合、数据治理和数据质量管控四大基础。四部曲环环相扣,助你打通数据孤岛,提升数据价值,实现精准决策与业务增长。
数据管理四部曲:元数据管理、数据整合、数据治理、数据质量管控
|
6月前
|
数据采集 人工智能 监控
企业数据来源杂、质量差,如何通过主数据管理解决?如何确保数据可信、一致和可用?
本文三桥君系统介绍了主数据管理(MDM)在企业数字化转型中的关键作用。产品专家三桥君从数据清洗、治理、处理到流转四个维度,详细阐述了如何通过标准化流程将数据转化为企业核心资产。重点包括:数据清洗的方法与工具应用;数据治理的组织保障与制度设计;数据处理的三大核心动作;以及数据流转的三种模式与安全控制。专家三桥君强调主数据管理能够推动企业从"经验决策"转向"数据驱动",并提出构建统一数据服务网关、"数据血缘图谱"等实战建议,为企业数字化转型提供系统化解决方案。
248 0
|
人工智能 关系型数据库 分布式数据库
拥抱Data+AI|“全球第一”雅迪如何实现智能营销?DMS+PolarDB注入数据新活力
针对雅迪“云销通App”的需求与痛点,本文将介绍阿里云瑶池数据库DMS+PolarDB for AI提供的一站式Data+AI解决方案,助力销售人员高效用数,全面提升销售管理效率。
|
关系型数据库 分布式数据库 数据库
云栖大会|从数据到决策:AI时代数据库如何实现高效数据管理?
在2024云栖大会「海量数据的高效存储与管理」专场,阿里云瑶池讲师团携手AMD、FunPlus、太美医疗科技、中石化、平安科技以及小赢科技、迅雷集团的资深技术专家深入分享了阿里云在OLTP方向的最新技术进展和行业最佳实践。
|
存储 人工智能 安全
【荣誉奖项】荣获2024数据治理优秀产品!瓴羊Dataphin联合DAMA发布数据管理技能认证
瓴羊Dataphin连续俩年获得DAMA年度优秀数据治理产品奖,本次与DAMA联合发布“DAMA x 瓴羊 数据管理技能认证”,助力提升全民数据素养。
630 0
【荣誉奖项】荣获2024数据治理优秀产品!瓴羊Dataphin联合DAMA发布数据管理技能认证
|
数据采集 安全 数据管理
通信行业数据治理:如何实现高效、安全的数据管理?
在未来的发展中,通信行业的企业应加强数据治理意识,提高数据治理能力;同时,积极开展跨行业的合作创新,共同推动行业的繁荣与发展。相信在不久的将来,通信行业将迎来更加美好的明天。
|
Java 测试技术 容器
从零到英雄:Struts 2 最佳实践——你的Web应用开发超级变身指南!
【8月更文挑战第31天】《Struts 2 最佳实践:从设计到部署的全流程指南》深入介绍如何利用 Struts 2 框架从项目设计到部署的全流程。从初始化配置到采用 MVC 设计模式,再到性能优化与测试,本书详细讲解了如何构建高效、稳定的 Web 应用。通过最佳实践和代码示例,帮助读者掌握 Struts 2 的核心功能,并确保应用的安全性和可维护性。无论是在项目初期还是后期运维,本书都是不可或缺的参考指南。
198 0

热门文章

最新文章