【MySQL】(十三)浅谈 MySQL 索引优化分析1

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 【MySQL】(十三)浅谈 MySQL 索引优化分析1

一、索引的概念


1.1 是什么


MySQL 官方对索引的定义为:索引(Index)是帮助 MySQL 高效获取数据的数据结构。可以得到索引的本质: 索引是数据结构。可以简单理解为 排好序的快速查找数据结构。


在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。下图就是一种可能的索引方式示例:



左边是数据表,一共有两列七条记录,最左边的是数据记录的物理地址。为了加快 Col2 的查找,可以维护一个 右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指 针,这样就可以运用 二叉查找在一定的复杂度内获取到相应数据,从而快速的检索出符合条件的记录。


一般来说索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。


1.2 优缺点


优势:


  • 提高数据检索的效率,降低数据库的IO成本。


  • 通过索引列对数据进行排序,降低数据排序的成本,降低了CPU的消耗。


劣势:


  • 虽然索引大大提高了查询速度,同时却会降低更新表的速度,如对表进行INSERT、UPDATE和DELETE。因为更新表时,MySQL不仅要保存数据,还要保存一下索引文件每次更新添加了索引列的字段,都会调整因为 更新所带来的键值变化后的索引信息。


  • 实际上索引也是一张表,该表保存了主键与索引字段,并指向实体表的记录,所以索引列也是要占用空间的。


二、MySQL 的索引


2.1 Btree 索引

MySQL 使用的是 Btree 索引。



【初始化介绍】


一颗 B 树,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),


如磁盘块 1 包含数据项 17 和 35,包含指针 P1、P2、P3,


P1 表示小于 17 的磁盘块,P2 表示在 17 和 35 之间的磁盘块,P3 表示大于 35 的磁盘块。


真实的数据存在于叶子节点即 3、5、9、10、13、15、28、29、36、60、75、79、90、99。


非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如 17、35 并不真实存在于数据表中。


【查找过程】


如果要查找数据项 29,那么首先会把磁盘块 1 由磁盘加载到内存,此时发生一次 IO,在内存中用二分查找确定 29 在 17 和 35 之间,锁定磁盘块 1 的 P2 指针,内存时间因为非常短(相比磁盘的 IO)可以忽略不计,通过磁盘块 1 的 P2 指针的磁盘地址把磁盘块 3 由磁盘加载到内存,发生第二次 IO,29 在 26 和 30 之间,锁定磁盘块 3 的 P2 指 针,通过指针加载磁盘块 8 到内存,发生第三次 IO,同时内存中做二分查找找到 29,结束查询,总计三次 IO。


真实的情况是,3 层的 B+树可以表示上百万的数据,如果上百万的数据查找只需要三次 IO,性能提高将是巨大的, 如果没有索引,每个数据项都要发生一次 IO,那么总共需要百万次的 IO,显然成本非常非常高。


2.2 B+tree 索引



B+Tree 与 B-Tree 的区别


1)B-树的关键字和记录是放在一起的,叶子节点可以看作外部节点,不包含任何信息;B+树的非叶子节点中只有关键字和指向下一个节点的索引,记录只放在叶子节点中。


2)在 B-树中,越靠近根节点的记录查找时间越快,只要找到关键字即可确定记录的存在;而 B+树中每个记录的查找时间基本是一样的,都需要从根节点走到叶子节点,而且在叶子节点中还要再比较关键字。


从这个角度看 B- 树的性能好像要比 B+树好,而在实际应用中却是 B+树的性能要好些。因为 B+树的非叶子节点不存放实际的数据, 这样每个节点可容纳的元素个数比 B-树多,树高比 B-树小,这样带来的好处是减少磁盘访问次数。


尽管 B+树找到 一个记录所需的比较次数要比 B-树多,但是一次磁盘访问的时间相当于成百上千次内存比较的时间,因此实际中 B+树的性能可能还会好些,而且 B+树的叶子节点使用指针连接在一起,方便顺序遍历(例如查看一个目录下的所有 文件,一个表中的所有记录等),这也是很多数据库和文件系统使用 B+树的缘故。


思考:为什么说 B+树比 B-树更适合实际应用中操作系统的文件索引和数据库索引?


1)B+树的磁盘读写代价更低


B+树的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对 B 树更小。如果把所有同一内部结点 的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就 越多。相对来说 IO 读写次数也就降低了。


2) B+树的查询效率更加稳定


由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须 走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。


2.3 聚簇索引和非聚簇索引


聚簇索引并不是一种单独的索引类型,而是一种数据存储方式。术语‘聚簇’表示:数据行和相邻的键值聚簇的存储在一起。如下图,左侧的索引就是聚簇索引,因为数据行在磁盘的排列和索引排序保持一致。



聚簇索引的好处: 按照聚簇索引排列顺序,查询显示一定范围数据的时候,由于数据都是紧密相连,数据库不不用从多 个数据块中提取数据,所以节省了大量的 io 操作。


聚簇索引的限制: 对于 mysql 数据库目前只有 innodb 数据引擎支持聚簇索引,而 Myisam 并不支持聚簇索引。 由于数据物理存储排序方式只能有一种,所以每个 Mysql 的表只能有一个聚簇索引。一般情况下就是 该表的主键。


为了充分利用聚簇索引的聚簇的特性,所以 innodb 表的主键列尽量选用有序的顺序 id,而不建议用 无序的 id,比如 uuid 这种。


2.4 时间复杂度(扩展)


同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的 目的在于选择合适算法和改进算法。

时间复杂度是指执行算法所需要的计算工作量,用大 O 表示记为:O(…)



相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
目录
相关文章
|
14天前
|
存储 消息中间件 监控
MySQL 到 ClickHouse 明细分析链路改造:数据校验、补偿与延迟治理
蒋星熠Jaxonic,数据领域技术深耕者。擅长MySQL到ClickHouse链路改造,精通实时同步、数据校验与延迟治理,致力于构建高性能、高一致性的数据架构体系。
MySQL 到 ClickHouse 明细分析链路改造:数据校验、补偿与延迟治理
|
28天前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
62 3
|
6天前
|
NoSQL 算法 Redis
【Docker】(3)学习Docker中 镜像与容器数据卷、映射关系!手把手带你安装 MySql主从同步 和 Redis三主三从集群!并且进行主从切换与扩容操作,还有分析 哈希分区 等知识点!
Union文件系统(UnionFS)是一种**分层、轻量级并且高性能的文件系统**,它支持对文件系统的修改作为一次提交来一层层的叠加,同时可以将不同目录挂载到同一个虚拟文件系统下(unite several directories into a single virtual filesystem) Union 文件系统是 Docker 镜像的基础。 镜像可以通过分层来进行继承,基于基础镜像(没有父镜像),可以制作各种具体的应用镜像。
100 5
|
28天前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(上)
最终建议:当前系统是完美的读密集型负载模型,优化重点应放在减少行读取量和提高数据定位效率。通过索引优化、分区策略和内存缓存,预期可降低30%的CPU负载,同时保持100%的缓冲池命中率。建议每百万次查询后刷新统计信息以持续优化
97 6
|
28天前
|
缓存 监控 关系型数据库
使用MYSQL Report分析数据库性能(中)
使用MYSQL Report分析数据库性能
88 1
|
2月前
|
存储 关系型数据库 MySQL
深入理解MySQL索引类型及其应用场景分析。
通过以上介绍可以看出各类MySQL指标各自拥有明显利弊与最佳实践情墁,在实际业务处理过程中选择正确型号极其重要以确保系统运作流畅而稳健。
136 12
|
3月前
|
存储 SQL 关系型数据库
MySQL的Redo Log与Binlog机制对照分析
通过合理的配置和细致的管理,这两种日志机制相互配合,能够有效地提升MySQL数据库的可靠性和稳定性。
135 10
|
3月前
|
SQL 关系型数据库 MySQL
MySQL group by 底层原理详解。group by 执行 慢 原因深度分析。(图解+秒懂+史上最全)
MySQL group by 底层原理详解。group by 执行 慢 原因深度分析。(图解+秒懂+史上最全)
MySQL group by 底层原理详解。group by 执行 慢 原因深度分析。(图解+秒懂+史上最全)
|
11月前
|
SQL 关系型数据库 MySQL
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
MySQL慢查询优化、索引优化,是必知必备,大厂面试高频,本文深入详解,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
|
6月前
|
SQL 关系型数据库 MySQL
【MySQL】SQL分析的几种方法
以上就是SQL分析的几种方法。需要注意的是,这些方法并不是孤立的,而是相互关联的。在实际的SQL分析中,我们通常需要结合使用这些方法,才能找出最佳的优化策略。同时,SQL分析也需要对数据库管理系统,数据,业务需求有深入的理解,这需要时间和经验的积累。
193 12

推荐镜像

更多