【Druid】(四)Apache Druid 部署和配置(单机版 / Docker 容器版 / Kubernetes 集群版)1

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 【Druid】(四)Apache Druid 部署和配置(单机版 / Docker 容器版 / Kubernetes 集群版)1

文章目录


一、Apache Druid 部署


1.1 单机版

1.1.1 Jar 包下载

1.1.2 Druid 的安装部署


1.2 Docker 容器版

1.2.1 下载

1.2.2 配置 Docker 文件共享

1.2.3 启动

1.2.4 校验

Historical 容器

PostgreSQL 容器


1.3 Kubernetes 集群版

1.3.1 安装

1.3.2 校验

1.3.3 ZooKeeper 元数据

1.3.4 Broker 健康检查

1.3.5 Historical 缓存

1.3.6 Segment 文件

1.3.7 Coordinator 动态配置

1.3.8 Druid SQL 查询


二、配置

2.1 常用端口

2.2 rollup

2.3 selectStrategy

2.4 maxRowsPerSegment

2.5 druid.server.tier

2.6 tieredReplicants

2.7 Coordinator Rule 配置


一、Apache Druid 部署


1.1 单机版


1.1.1 Jar 包下载


https://imply.io/get-started 下载最新版本安装包


1.1.2 Druid 的安装部署


说明:imply 集成了Druid,提供了Druid 从部署到配置到各种可视化工具的完整的解决方案,

imply 有点类似Cloudera Manager。


1.解压


tar -zxvf imply-2.7.10.tar.gz -C /opt/module

目录说明如下:


bin/ - run scripts for included software.

conf/ - template configurations for a clustered setup.

conf-quickstart/* - configurations for the single-machine quickstart.

dist/ - all included software.

quickstart/ - files related to the single-machine quickstart.


2.修改配置文件


1)修改Druid 的ZK 配置


[chris@hadoop102 _common]$ pwd
/opt/module/imply/conf/druid/_common
[chris@hadoop102 _common]$ vi common.runtime.properties
druid.zk.service.host=hadoop102:2181,hadoop103:2181,hadoop104:218
1


2)修改启动命令参数,使其不校验不启动内置ZK


[chris@hadoop102 supervise]$ pwd
/opt/module/imply/conf/supervise
:verify bin/verify-java
#:verify bin/verify-default-ports
#:verify bin/verify-version-check
:kill-timeout 10
#!p10 zk bin/run-zk conf-quickstart


3.启动


1)启动zookeeper


2)启动imply


[chris@hadoop102 imply]$ bin/supervise -c
conf/supervise/quickstart.conf

说明:每启动一个服务均会打印出一条日志。可以通过/opt/module/imply-2.7.10/var/sv/查看服务启动时的日志信息


3)查看端口号9095 的启动情况


[chris@hadoop102 ~]$ netstat -anp | grep 9095
tcp 0 0 :::9095 :::*
LISTEN 3930/imply-ui-linux
tcp 0
0 ::ffff:192.168.1.102:9095 ::ffff:192.168.1.1:52567
ESTABLISHED 3930/imply-ui-linux
tcp 0
0 ::ffff:192.168.1.102:9095 ::ffff:192.168.1.1:52568
ESTABLISHED 3930/imply-ui-linux


4.登录hadoop102:9095 查看



5.停止服务


按Ctrl + c 中断监督进程, 如果想中断服务后进行干净的启动, 请删除

/opt/module/imply-2.7.10/var/目录。


1.2 Docker 容器版


1.2.1 下载


# 搜索 Docker Hub
$ docker search druid
# 下载最新版本的镜像
$ docker pull apache/druid:0.19.0
# 检查镜像是否下载成功
$ docker image list


1.2.2 配置 Docker 文件共享


打开配置面板,进入 File Sharing 配置页面,增加 ${the path of your source code}/distribution/docker/storage 路径,随后点击 Apply & Restart 按钮,应用并重启


1.2.3 启动


$ git clone https://github.com/apache/druid.git
$ cd druid
$ docker-compose -f distribution/docker/docker-compose.yml up
# 同理,也可以使用 start/stop 命令启停容器
$ docker-compose -f distribution/docker/docker-compose.yml stop
$ docker-compose -f distribution/docker/docker-compose.yml start
# 或者使用 down 命令移除容器
$ docker-compose -f distribution/docker/docker-compose.yml down


1.2.4 校验


Historical 容器


$ docker exec -it historical sh
$ ls /opt/data/
  indexing-logs  segments
$ ls /opt/data/segments/
  intermediate_pushes  wikipedia
$ ls /opt/data/segments/wikipedia/
  2016-06-27T00:00:00.000Z_2016-06-28T00:00:00.000Z
$ ls /opt/data/segments/wikipedia/2016-06-27T00\:00\:00.000Z_2016-06-28T00\:00\:00.000Z/
  2020-06-04T07:11:42.714Z
$ ls /opt/data/segments/wikipedia/2016-06-27T00\:00\:00.000Z_2016-06-28T00\:00\:00.000Z/2020-06-04T07\:11\:42.714Z/0/
  index.zip
$ ls -lh


total 8M

-rw-r--r--    1 druid    druid       5.9M Jun  4 07:49 00000.smoosh
-rw-r--r--    1 druid    druid         29 Jun  4 07:49 factory.json
-rw-r--r--    1 druid    druid       1.7M Jun  4 07:14 index.zip
-rw-r--r--    1 druid    druid        707 Jun  4 07:49 meta.smoosh
-rw-r--r--    1 druid    druid          4 Jun  4 07:49 version.bin
$ cat factory.json
{"type":"mMapSegmentFactory"}
$ xxd version.bin
00000000: 0000 0009
....
$ cat meta.smoosh
v1,2147483647,1
__time,0,0,1106
channel,0,145739,153122
cityName,0,153122,195592
comment,0,195592,1598156
count,0,1106,2063
countryIsoCode,0,1598156,1614170
countryName,0,1614170,1630859
diffUrl,0,1630859,4224103
flags,0,4224103,4252873
index.drd,0,6162513,6163275
isAnonymous,0,4252873,4262876
isMinor,0,4262876,4282592
isNew,0,4282592,4290896
isRobot,0,4290896,4298796
isUnpatrolled,0,4298796,4307345
metadata.drd,0,6163275,6163925
namespace,0,4307345,4342089
page,0,4342089,5710071
regionIsoCode,0,5710071,5730339
regionName,0,5730339,5759351
sum_added,0,2063,37356
sum_commentLength,0,37356,66244
sum_deleted,0,66244,81170
sum_delta,0,81170,126275
sum_deltaBucket,0,126275,145739
user,0,5759351,6162513

其中,index.drd 包含该 Segment 覆盖的时间范围、指定的 Bitmap 种类(concise / roaring),以及包含的列和维度;而 metadata.drd 包含是否 Rollup、哪些聚合函数、查询的粒度,时间戳字段信息,以及可用于存储任意 Key-Value 数据的 Map 结构(例如 Kafka Firehose 用来存储 offset 信息)。更多细节详见 org.apache.druid.segment.IndexIO.V9IndexLoader#load


PostgreSQL 容器
$ docker exec -it postgres bash
$ psql -U druid -d druid
$ \l
List of databases
   Name    | Owner | Encoding |  Collate   |   Ctype    | Access privileges
-----------+-------+----------+------------+------------+-------------------
 druid     | druid | UTF8     | en_US.utf8 | en_US.utf8 |
 postgres  | druid | UTF8     | en_US.utf8 | en_US.utf8 |
 template0 | druid | UTF8     | en_US.utf8 | en_US.utf8 | =c/druid         +
           |       |          |            |            | druid=CTc/druid
 template1 | druid | UTF8     | en_US.utf8 | en_US.utf8 | =c/druid         +
           |       |          |            |            | druid=CTc/druid
(4 rows)
$ \c druid
You are now connected to database "druid" as user "druid".
$ \dt
List of relations
 Schema |         Name          | Type  | Owner
--------+-----------------------+-------+-------
 public | druid_audit           | table | druid
 public | druid_config          | table | druid
 public | druid_datasource      | table | druid
 public | druid_pendingsegments | table | druid
 public | druid_rules           | table | druid
 public | druid_segments        | table | druid
 public | druid_supervisors     | table | druid
 public | druid_tasklocks       | table | druid
 public | druid_tasklogs        | table | druid
 public | druid_tasks           | table | druid
(10 rows)
> select id, datasource, created_date, start, "end", partitioned, version, used from public.druid_segments;
wikipedia_2016-06-27T00:00:00.000Z_2016-06-28T00:00:00.000Z_2020-06-04T07:11:42.714Z | wikipedia  | 2020-06-04T07:14:50.619Z | 2016-06-27T00:00:00.000Z | 2016-06-28T00:00:00.000Z | t           | 2020-06-04T07:11:42.714Z | t


相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
1月前
|
存储 运维 Kubernetes
正式开源,Doris Operator 支持高效 Kubernetes 容器化部署方案
飞轮科技推出了 Doris 的 Kubernetes Operator 开源项目(简称:Doris Operator),并捐赠给 Apache 基金会。该工具集成了原生 Kubernetes 资源的复杂管理能力,并融合了 Doris 组件间的分布式协同、用户集群形态的按需定制等经验,为用户提供了一个更简洁、高效、易用的容器化部署方案。
正式开源,Doris Operator 支持高效 Kubernetes 容器化部署方案
|
2月前
|
Ubuntu Linux 开发工具
docker 是什么?docker初认识之如何部署docker-优雅草后续将会把产品发布部署至docker容器中-因此会出相关系列文章-优雅草央千澈
Docker 是一个开源的容器化平台,允许开发者将应用程序及其依赖项打包成标准化单元(容器),确保在任何支持 Docker 的操作系统上一致运行。容器共享主机内核,提供轻量级、高效的执行环境。本文介绍如何在 Ubuntu 上安装 Docker,并通过简单步骤验证安装成功。后续文章将探讨使用 Docker 部署开源项目。优雅草央千澈 源、安装 Docker 包、验证安装 - 适用场景:开发、测试、生产环境 通过以上步骤,您可以在 Ubuntu 系统上成功安装并运行 Docker,为后续的应用部署打下基础。
96 8
docker 是什么?docker初认识之如何部署docker-优雅草后续将会把产品发布部署至docker容器中-因此会出相关系列文章-优雅草央千澈
|
2月前
|
存储 Kubernetes 开发者
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
Docker 是一种开源的应用容器引擎,允许开发者将应用程序及其依赖打包成可移植的镜像,并在任何支持 Docker 的平台上运行。其核心概念包括镜像、容器和仓库。镜像是只读的文件系统,容器是镜像的运行实例,仓库用于存储和分发镜像。Kubernetes(k8s)则是容器集群管理系统,提供自动化部署、扩展和维护等功能,支持服务发现、负载均衡、自动伸缩等特性。两者结合使用,可以实现高效的容器化应用管理和运维。Docker 主要用于单主机上的容器管理,而 Kubernetes 则专注于跨多主机的容器编排与调度。尽管 k8s 逐渐减少了对 Docker 作为容器运行时的支持,但 Doc
172 5
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
|
2月前
|
存储 Kubernetes Docker
Kubernetes(k8s)和Docker Compose本质区别
理解它们的区别和各自的优势,有助于选择合适的工具来满足特定的项目需求。
228 19
|
1月前
|
人工智能 运维 监控
容器服务Kubernetes场景下可观测体系生产级最佳实践
阿里云容器服务团队在2024年继续蝉联Gartner亚洲唯一全球领导者象限,其可观测体系是运维的核心能力之一。该体系涵盖重保运维、大规模集群稳定性、业务异常诊断等场景,特别是在AI和GPU场景下提供了全面的观测解决方案。通过Tracing、Metric和Log等技术,阿里云增强了对容器网络、存储及多集群架构的监控能力,帮助客户实现高效运维和成本优化。未来,结合AI助手,将进一步提升问题定位和解决效率,缩短MTTR,助力构建智能运维体系。
|
3月前
|
运维 Kubernetes Docker
深入理解容器化技术:Docker与Kubernetes的协同工作
深入理解容器化技术:Docker与Kubernetes的协同工作
102 14
|
3月前
|
Kubernetes 监控 云计算
Docker与Kubernetes的协同工作
Docker与Kubernetes的协同工作
|
3月前
|
Kubernetes Cloud Native 持续交付
容器化、Kubernetes与微服务架构的融合
容器化、Kubernetes与微服务架构的融合
74 1
|
3月前
|
Kubernetes Cloud Native API
深入理解Kubernetes——容器编排的王者之道
深入理解Kubernetes——容器编排的王者之道
70 1
|
3月前
|
运维 Kubernetes Cloud Native
云原生技术入门:Kubernetes和Docker的协同工作
【10月更文挑战第43天】在云计算时代,云原生技术成为推动现代软件部署和运行的关键力量。本篇文章将带你了解云原生的基本概念,重点探讨Kubernetes和Docker如何协同工作以支持容器化应用的生命周期管理。通过实际代码示例,我们将展示如何在Kubernetes集群中部署和管理Docker容器,从而为初学者提供一条清晰的学习路径。

相关产品

  • 容器服务Kubernetes版