使用hadoop restful api实现对集群信息的统计

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 本文根据hadoop/spark的RESTful API,实现了对集群基本信息的统计功能,包括HDFS文件系统、job情况、资源队列情况的统计。这些API只提供了基础的数据,具体的统计与分析,还需要基于这些基础数据做一些简单的开发。

(适用于hadoop 2.7及以上版本)

涉及到RESTful API

1. 统计HDFS文件系统实时使用情况

{
  "ContentSummary":
  {
    "directoryCount": 2,
    "fileCount"     : 1,
    "length"        : 24930,
    "quota"         : -1,
    "spaceConsumed" : 24930,
    "spaceQuota"    : -1
  }
}
  • 关于返回结果的说明:
{
  "name"      : "ContentSummary",
  "properties":
  {
    "ContentSummary":
    {
      "type"      : "object",
      "properties":
      {
        "directoryCount":
        {
          "description": "The number of directories.",
          "type"       : "integer",
          "required"   : true
        },
        "fileCount":
        {
          "description": "The number of files.",
          "type"       : "integer",
          "required"   : true
        },
        "length":
        {
          "description": "The number of bytes used by the content.",
          "type"       : "integer",
          "required"   : true
        },
        "quota":
        {
          "description": "The namespace quota of this directory.",
          "type"       : "integer",
          "required"   : true
        },
        "spaceConsumed":
        {
          "description": "The disk space consumed by the content.",
          "type"       : "integer",
          "required"   : true
        },
        "spaceQuota":
        {
          "description": "The disk space quota.",
          "type"       : "integer",
          "required"   : true
        }
      }
    }
  }
}

2. 查看集群的实时信息和状态

  • URL

http://emr-header-1:8088/ws/v1/cluster

  • 返回结果
{
    "clusterInfo": {
        "id": 1495123166259, 
        "startedOn": 1495123166259, 
        "state": "STARTED", 
        "haState": "ACTIVE", 
        "rmStateStoreName": "org.apache.hadoop.yarn.server.resourcemanager.recovery.NullRMStateStore", 
        "resourceManagerVersion": "2.7.2", 
        "resourceManagerBuildVersion": "2.7.2 from 4bee04d3d1c27d7ef559365d3bdd2a8620807bfc by root source checksum c63f7cc71b8f63249e35126f0f7492d", 
        "resourceManagerVersionBuiltOn": "2017-04-17T12:28Z", 
        "hadoopVersion": "2.7.2", 
        "hadoopBuildVersion": "2.7.2 from 4bee04d3d1c27d7ef559365d3bdd2a8620807bfc by root source checksum 3329b146070a2bc9e249fa9ba9fb55", 
        "hadoopVersionBuiltOn": "2017-04-17T12:18Z", 
        "haZooKeeperConnectionState": "ResourceManager HA is not enabled."
    }
}

3. 查看资源队列的实时信息,包括队列的配额信息、资源使用实时情况

  • URL

http://emr-header-1:8088/ws/v1/cluster/scheduler

  • 返回结果
{
    "scheduler": {
        "schedulerInfo": {
            "type": "capacityScheduler", 
            "capacity": 100, 
            "usedCapacity": 0, 
            "maxCapacity": 100, 
            "queueName": "root", 
            "queues": {
                "queue": [
                    {
                        "type": "capacitySchedulerLeafQueueInfo", 
                        "capacity": 1, 
                        "usedCapacity": 0, 
                        "maxCapacity": 90, 
                        "absoluteCapacity": 1, 
                        "absoluteMaxCapacity": 90, 
                        "absoluteUsedCapacity": 0, 
                        "numApplications": 0, 
                        "queueName": "algorithm_aliyun", 
                        "state": "RUNNING", 
                        "resourcesUsed": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "hideReservationQueues": false, 
                        "nodeLabels": [
                            "*"
                        ], 
                        "numActiveApplications": 0, 
                        "numPendingApplications": 0, 
                        "numContainers": 0, 
                        "maxApplications": 100, 
                        "maxApplicationsPerUser": 100, 
                        "userLimit": 100, 
                        "users": null, 
                        "userLimitFactor": 1, 
                        "AMResourceLimit": {
                            "memory": 11776, 
                            "vCores": 7
                        }, 
                        "usedAMResource": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "userAMResourceLimit": {
                            "memory": 160, 
                            "vCores": 1
                        }, 
                        "preemptionDisabled": true
                    }, 
                    {
                        "type": "capacitySchedulerLeafQueueInfo", 
                        "capacity": 1, 
                        "usedCapacity": 0, 
                        "maxCapacity": 90, 
                        "absoluteCapacity": 1, 
                        "absoluteMaxCapacity": 90, 
                        "absoluteUsedCapacity": 0, 
                        "numApplications": 0, 
                        "queueName": "dcps_aliyun", 
                        "state": "RUNNING", 
                        "resourcesUsed": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "hideReservationQueues": false, 
                        "nodeLabels": [
                            "*"
                        ], 
                        "numActiveApplications": 0, 
                        "numPendingApplications": 0, 
                        "numContainers": 0, 
                        "maxApplications": 100, 
                        "maxApplicationsPerUser": 100, 
                        "userLimit": 100, 
                        "users": null, 
                        "userLimitFactor": 1, 
                        "AMResourceLimit": {
                            "memory": 11776, 
                            "vCores": 7
                        }, 
                        "usedAMResource": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "userAMResourceLimit": {
                            "memory": 160, 
                            "vCores": 1
                        }, 
                        "preemptionDisabled": true
                    }, 
                    {
                        "type": "capacitySchedulerLeafQueueInfo", 
                        "capacity": 31, 
                        "usedCapacity": 0, 
                        "maxCapacity": 100, 
                        "absoluteCapacity": 31, 
                        "absoluteMaxCapacity": 100, 
                        "absoluteUsedCapacity": 0, 
                        "numApplications": 0, 
                        "queueName": "default", 
                        "state": "RUNNING", 
                        "resourcesUsed": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "hideReservationQueues": false, 
                        "nodeLabels": [
                            "*"
                        ], 
                        "numActiveApplications": 0, 
                        "numPendingApplications": 0, 
                        "numContainers": 0, 
                        "maxApplications": 3100, 
                        "maxApplicationsPerUser": 3100, 
                        "userLimit": 100, 
                        "users": null, 
                        "userLimitFactor": 1, 
                        "AMResourceLimit": {
                            "memory": 13088, 
                            "vCores": 8
                        }, 
                        "usedAMResource": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "userAMResourceLimit": {
                            "memory": 4064, 
                            "vCores": 3
                        }, 
                        "preemptionDisabled": true
                    }, 
                    {
                        "type": "capacitySchedulerLeafQueueInfo", 
                        "capacity": 15.000001, 
                        "usedCapacity": 0, 
                        "maxCapacity": 100, 
                        "absoluteCapacity": 15.000001, 
                        "absoluteMaxCapacity": 100, 
                        "absoluteUsedCapacity": 0, 
                        "numApplications": 0, 
                        "queueName": "feed_aliyun", 
                        "state": "RUNNING", 
                        "resourcesUsed": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "hideReservationQueues": false, 
                        "nodeLabels": [
                            "*"
                        ], 
                        "numActiveApplications": 0, 
                        "numPendingApplications": 0, 
                        "numContainers": 0, 
                        "maxApplications": 1500, 
                        "maxApplicationsPerUser": 7500, 
                        "userLimit": 100, 
                        "users": null, 
                        "userLimitFactor": 5, 
                        "AMResourceLimit": {
                            "memory": 12320, 
                            "vCores": 8
                        }, 
                        "usedAMResource": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "userAMResourceLimit": {
                            "memory": 9856, 
                            "vCores": 7
                        }, 
                        "preemptionDisabled": true
                    }, 
                    {
                        "type": "capacitySchedulerLeafQueueInfo", 
                        "capacity": 51, 
                        "usedCapacity": 0, 
                        "maxCapacity": 90, 
                        "absoluteCapacity": 51, 
                        "absoluteMaxCapacity": 90, 
                        "absoluteUsedCapacity": 0, 
                        "numApplications": 0, 
                        "queueName": "hot_aliyun", 
                        "state": "RUNNING", 
                        "resourcesUsed": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "hideReservationQueues": false, 
                        "nodeLabels": [
                            "*"
                        ], 
                        "numActiveApplications": 0, 
                        "numPendingApplications": 0, 
                        "numContainers": 0, 
                        "maxApplications": 5100, 
                        "maxApplicationsPerUser": 5100, 
                        "userLimit": 100, 
                        "users": null, 
                        "userLimitFactor": 1, 
                        "AMResourceLimit": {
                            "memory": 11776, 
                            "vCores": 7
                        }, 
                        "usedAMResource": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "userAMResourceLimit": {
                            "memory": 6688, 
                            "vCores": 5
                        }, 
                        "preemptionDisabled": true
                    }, 
                    {
                        "type": "capacitySchedulerLeafQueueInfo", 
                        "capacity": 1, 
                        "usedCapacity": 0, 
                        "maxCapacity": 90, 
                        "absoluteCapacity": 1, 
                        "absoluteMaxCapacity": 90, 
                        "absoluteUsedCapacity": 0, 
                        "numApplications": 0, 
                        "queueName": "push_aliyun", 
                        "state": "RUNNING", 
                        "resourcesUsed": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "hideReservationQueues": false, 
                        "nodeLabels": [
                            "*"
                        ], 
                        "numActiveApplications": 0, 
                        "numPendingApplications": 0, 
                        "numContainers": 0, 
                        "maxApplications": 100, 
                        "maxApplicationsPerUser": 100, 
                        "userLimit": 100, 
                        "users": null, 
                        "userLimitFactor": 1, 
                        "AMResourceLimit": {
                            "memory": 11776, 
                            "vCores": 7
                        }, 
                        "usedAMResource": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "userAMResourceLimit": {
                            "memory": 160, 
                            "vCores": 1
                        }, 
                        "preemptionDisabled": true
                    }
                ]
            }
        }
    }
}

4. 查看实时的作业列表,列表信息中也包含了作业运行的详情信息,包括作业名称、id、运行状态、起止时间,资源使用情况。

  • URL

http://emr-header-1:8088/ws/v1/cluster/apps

  • 返回结果
{
  "apps":
  {
    "app":
    [
       {
          "finishedTime" : 1326815598530,
          "amContainerLogs" : "http://host.domain.com:8042/node/containerlogs/container_1326815542473_0001_01_000001",
          "trackingUI" : "History",
          "state" : "FINISHED",
          "user" : "user1",
          "id" : "application_1326815542473_0001",
          "clusterId" : 1326815542473,
          "finalStatus" : "SUCCEEDED",
          "amHostHttpAddress" : "host.domain.com:8042",
          "progress" : 100,
          "name" : "word count",
          "startedTime" : 1326815573334,
          "elapsedTime" : 25196,
          "diagnostics" : "",
          "trackingUrl" : "http://host.domain.com:8088/proxy/application_1326815542473_0001/jobhistory/job/job_1326815542473_1_1",
          "queue" : "default",
          "allocatedMB" : 0,
          "allocatedVCores" : 0,
          "runningContainers" : 0,
          "memorySeconds" : 151730,
          "vcoreSeconds" : 103
       },
       {
          "finishedTime" : 1326815789546,
          "amContainerLogs" : "http://host.domain.com:8042/node/containerlogs/container_1326815542473_0002_01_000001",
          "trackingUI" : "History",
          "state" : "FINISHED",
          "user" : "user1",
          "id" : "application_1326815542473_0002",
          "clusterId" : 1326815542473,
          "finalStatus" : "SUCCEEDED",
          "amHostHttpAddress" : "host.domain.com:8042",
          "progress" : 100,
          "name" : "Sleep job",
          "startedTime" : 1326815641380,
          "elapsedTime" : 148166,
          "diagnostics" : "",
          "trackingUrl" : "http://host.domain.com:8088/proxy/application_1326815542473_0002/jobhistory/job/job_1326815542473_2_2",
          "queue" : "default",
          "allocatedMB" : 0,
          "allocatedVCores" : 0,
          "runningContainers" : 1,
          "memorySeconds" : 640064,
          "vcoreSeconds" : 442
       } 
    ]
  }
}

5. 统计作业扫描的数据量情况

job扫描的数据量,需要通过History Server的RESTful API查询,MapReduce的和Spark的又有一些差异。

5.1 Mapreduce job扫描数据量

  • URL

http://emr-header-1:19888/ws/v1/history/mapreduce/jobs/job_1495123166259_0962/counters

  • 返回结果
{
   "jobCounters" : {
      "id" : "job_1326381300833_2_2",
      "counterGroup" : [
         {
            "counterGroupName" : "Shuffle Errors",
            "counter" : [
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "BAD_ID"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "CONNECTION"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "IO_ERROR"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "WRONG_LENGTH"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "WRONG_MAP"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "WRONG_REDUCE"
               }
            ]
          },
         {
            "counterGroupName" : "org.apache.hadoop.mapreduce.FileSystemCounter",
            "counter" : [
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 2483,
                  "name" : "FILE_BYTES_READ"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 108525,
                  "name" : "FILE_BYTES_WRITTEN"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "FILE_READ_OPS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "FILE_LARGE_READ_OPS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "FILE_WRITE_OPS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 48,
                  "name" : "HDFS_BYTES_READ"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "HDFS_BYTES_WRITTEN"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 1,
                  "name" : "HDFS_READ_OPS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "HDFS_LARGE_READ_OPS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "HDFS_WRITE_OPS"
               }
            ]
         },
         {
            "counterGroupName" : "org.apache.hadoop.mapreduce.TaskCounter",
            "counter" : [
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 1,
                  "name" : "MAP_INPUT_RECORDS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 1200,
                  "name" : "MAP_OUTPUT_RECORDS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 4800,
                  "name" : "MAP_OUTPUT_BYTES"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 2235,
                  "name" : "MAP_OUTPUT_MATERIALIZED_BYTES"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 48,
                  "name" : "SPLIT_RAW_BYTES"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "COMBINE_INPUT_RECORDS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "COMBINE_OUTPUT_RECORDS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 1200,
                  "name" : "REDUCE_INPUT_GROUPS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 2235,
                  "name" : "REDUCE_SHUFFLE_BYTES"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 1200,
                  "name" : "REDUCE_INPUT_RECORDS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "REDUCE_OUTPUT_RECORDS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 2400,
                  "name" : "SPILLED_RECORDS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 1,
                  "name" : "SHUFFLED_MAPS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "FAILED_SHUFFLE"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 1,
                  "name" : "MERGED_MAP_OUTPUTS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 113,
                  "name" : "GC_TIME_MILLIS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 1830,
                  "name" : "CPU_MILLISECONDS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 478068736,
                  "name" : "PHYSICAL_MEMORY_BYTES"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 2159284224,
                  "name" : "VIRTUAL_MEMORY_BYTES"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 378863616,
                  "name" : "COMMITTED_HEAP_BYTES"
               }
            ]
         },
         {
            "counterGroupName" : "org.apache.hadoop.mapreduce.lib.input.FileInputFormatCounter",
            "counter" : [
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "BYTES_READ"
               }
            ]
         },
         {
            "counterGroupName" : "org.apache.hadoop.mapreduce.lib.output.FileOutputFormatCounter",
            "counter" : [
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "BYTES_WRITTEN"
               }
            ]
         }
      ]
   }
}

其中org.apache.hadoop.mapreduce.lib.input.FileInputFormatCounter里面的BYTES_READ为job扫描的数据量
具体参数:https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-hs/HistoryServerRest.html#Job_Counters_API

5.2 Mapreduce job扫描数据量

  • URL

http://emr-header-1:18080/api/v1/applications/application_1495123166259_1050/executors

每个executor的totalInputBytes总和为整个job的数据扫描量。
更多参考:http://spark.apache.org/docs/latest/monitoring.html

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
目录
相关文章
|
15天前
|
Java API 数据库
构建RESTful API已经成为现代Web开发的标准做法之一。Spring Boot框架因其简洁的配置、快速的启动特性及丰富的功能集而备受开发者青睐。
【10月更文挑战第11天】本文介绍如何使用Spring Boot构建在线图书管理系统的RESTful API。通过创建Spring Boot项目,定义`Book`实体类、`BookRepository`接口和`BookService`服务类,最后实现`BookController`控制器来处理HTTP请求,展示了从基础环境搭建到API测试的完整过程。
31 4
|
1天前
|
JSON API 数据格式
如何使用Python和Flask构建一个简单的RESTful API。Flask是一个轻量级的Web框架
本文介绍了如何使用Python和Flask构建一个简单的RESTful API。Flask是一个轻量级的Web框架,适合小型项目和微服务。文章从环境准备、创建基本Flask应用、定义资源和路由、请求和响应处理、错误处理等方面进行了详细说明,并提供了示例代码。通过这些步骤,读者可以快速上手构建自己的RESTful API。
7 2
|
1天前
|
API 数据安全/隐私保护 开发者
探索RESTful API设计的最佳实践
【10月更文挑战第25天】在数字时代的浪潮中,API成为了连接不同软件组件的桥梁。本文将深入探讨如何设计高效的RESTful API,通过实际代码示例揭示背后的逻辑和结构之美。我们将从基础原则出发,逐步展开到高级概念,旨在为读者提供一套完整的设计蓝图。
|
5天前
|
SQL API 数据安全/隐私保护
打造现代化后端服务:从零到一实现RESTful API
【10月更文挑战第20天】在数字化时代的浪潮中,构建一个高效、可靠的后端服务是每个软件工程师的必备技能。本文将引导你理解RESTful API的设计哲学,并通过实际的代码示例,展示如何从无到有地实现一个现代化的后端服务。无论你是初学者还是有经验的开发者,这篇文章都将为你提供宝贵的知识和启发。
|
6天前
|
XML 存储 缓存
RESTful API
RESTful API
|
5天前
|
JSON 安全 API
抖音店铺商品信息的 API
抖音店铺商品信息的 API 主要用于获取商品的详细信息,包括基本信息、属性、库存、评价、推广信息等。开发者需注册账号、申请权限、阅读文档、发送请求并处理响应。此外,还提供商品搜索和管理接口,帮助商家优化商品展示和管理订单,提高运营效率。使用时需遵守平台规则,确保数据安全和合法性。
|
5天前
|
存储 XML API
探索后端开发中的RESTful API设计哲学
【10月更文挑战第21天】在数字化时代,后端开发是构建强大、可靠和可扩展应用程序的基石。本文将深入探讨RESTful API的设计原则,并展示如何通过这些原则来提升API的质量和性能。我们将从基础概念出发,逐步深入到实际案例分析,揭示高效API设计的秘诀。无论你是初学者还是有经验的开发者,这篇文章都将为你提供宝贵的见解和实用的技巧,帮助你在后端开发的道路上更进一步。
|
11天前
|
监控 负载均衡 API
Web、RESTful API 在微服务中有哪些作用?
在微服务架构中,Web 和 RESTful API 扮演着至关重要的角色。它们帮助实现服务之间的通信、数据交换和系统的可扩展性。
31 2
|
12天前
|
Prometheus 监控 Cloud Native
调用淘宝 API 时如何处理错误信息?
调用淘宝API时,需熟悉其错误码体系,处理客户端(如参数错误、权限不足)和服务器(如内部错误、网络问题)错误,编写错误处理逻辑,并进行充分测试与监控,确保API调用稳定可靠。
|
14天前
|
JSON API 数据格式
使用Python和Flask构建简单的RESTful API
【10月更文挑战第12天】使用Python和Flask构建简单的RESTful API
35 1