使用hadoop restful api实现对集群信息的统计

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 本文根据hadoop/spark的RESTful API,实现了对集群基本信息的统计功能,包括HDFS文件系统、job情况、资源队列情况的统计。这些API只提供了基础的数据,具体的统计与分析,还需要基于这些基础数据做一些简单的开发。

(适用于hadoop 2.7及以上版本)

涉及到RESTful API

1. 统计HDFS文件系统实时使用情况

{
  "ContentSummary":
  {
    "directoryCount": 2,
    "fileCount"     : 1,
    "length"        : 24930,
    "quota"         : -1,
    "spaceConsumed" : 24930,
    "spaceQuota"    : -1
  }
}
  • 关于返回结果的说明:
{
  "name"      : "ContentSummary",
  "properties":
  {
    "ContentSummary":
    {
      "type"      : "object",
      "properties":
      {
        "directoryCount":
        {
          "description": "The number of directories.",
          "type"       : "integer",
          "required"   : true
        },
        "fileCount":
        {
          "description": "The number of files.",
          "type"       : "integer",
          "required"   : true
        },
        "length":
        {
          "description": "The number of bytes used by the content.",
          "type"       : "integer",
          "required"   : true
        },
        "quota":
        {
          "description": "The namespace quota of this directory.",
          "type"       : "integer",
          "required"   : true
        },
        "spaceConsumed":
        {
          "description": "The disk space consumed by the content.",
          "type"       : "integer",
          "required"   : true
        },
        "spaceQuota":
        {
          "description": "The disk space quota.",
          "type"       : "integer",
          "required"   : true
        }
      }
    }
  }
}

2. 查看集群的实时信息和状态

  • URL

http://emr-header-1:8088/ws/v1/cluster

  • 返回结果
{
    "clusterInfo": {
        "id": 1495123166259, 
        "startedOn": 1495123166259, 
        "state": "STARTED", 
        "haState": "ACTIVE", 
        "rmStateStoreName": "org.apache.hadoop.yarn.server.resourcemanager.recovery.NullRMStateStore", 
        "resourceManagerVersion": "2.7.2", 
        "resourceManagerBuildVersion": "2.7.2 from 4bee04d3d1c27d7ef559365d3bdd2a8620807bfc by root source checksum c63f7cc71b8f63249e35126f0f7492d", 
        "resourceManagerVersionBuiltOn": "2017-04-17T12:28Z", 
        "hadoopVersion": "2.7.2", 
        "hadoopBuildVersion": "2.7.2 from 4bee04d3d1c27d7ef559365d3bdd2a8620807bfc by root source checksum 3329b146070a2bc9e249fa9ba9fb55", 
        "hadoopVersionBuiltOn": "2017-04-17T12:18Z", 
        "haZooKeeperConnectionState": "ResourceManager HA is not enabled."
    }
}

3. 查看资源队列的实时信息,包括队列的配额信息、资源使用实时情况

  • URL

http://emr-header-1:8088/ws/v1/cluster/scheduler

  • 返回结果
{
    "scheduler": {
        "schedulerInfo": {
            "type": "capacityScheduler", 
            "capacity": 100, 
            "usedCapacity": 0, 
            "maxCapacity": 100, 
            "queueName": "root", 
            "queues": {
                "queue": [
                    {
                        "type": "capacitySchedulerLeafQueueInfo", 
                        "capacity": 1, 
                        "usedCapacity": 0, 
                        "maxCapacity": 90, 
                        "absoluteCapacity": 1, 
                        "absoluteMaxCapacity": 90, 
                        "absoluteUsedCapacity": 0, 
                        "numApplications": 0, 
                        "queueName": "algorithm_aliyun", 
                        "state": "RUNNING", 
                        "resourcesUsed": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "hideReservationQueues": false, 
                        "nodeLabels": [
                            "*"
                        ], 
                        "numActiveApplications": 0, 
                        "numPendingApplications": 0, 
                        "numContainers": 0, 
                        "maxApplications": 100, 
                        "maxApplicationsPerUser": 100, 
                        "userLimit": 100, 
                        "users": null, 
                        "userLimitFactor": 1, 
                        "AMResourceLimit": {
                            "memory": 11776, 
                            "vCores": 7
                        }, 
                        "usedAMResource": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "userAMResourceLimit": {
                            "memory": 160, 
                            "vCores": 1
                        }, 
                        "preemptionDisabled": true
                    }, 
                    {
                        "type": "capacitySchedulerLeafQueueInfo", 
                        "capacity": 1, 
                        "usedCapacity": 0, 
                        "maxCapacity": 90, 
                        "absoluteCapacity": 1, 
                        "absoluteMaxCapacity": 90, 
                        "absoluteUsedCapacity": 0, 
                        "numApplications": 0, 
                        "queueName": "dcps_aliyun", 
                        "state": "RUNNING", 
                        "resourcesUsed": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "hideReservationQueues": false, 
                        "nodeLabels": [
                            "*"
                        ], 
                        "numActiveApplications": 0, 
                        "numPendingApplications": 0, 
                        "numContainers": 0, 
                        "maxApplications": 100, 
                        "maxApplicationsPerUser": 100, 
                        "userLimit": 100, 
                        "users": null, 
                        "userLimitFactor": 1, 
                        "AMResourceLimit": {
                            "memory": 11776, 
                            "vCores": 7
                        }, 
                        "usedAMResource": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "userAMResourceLimit": {
                            "memory": 160, 
                            "vCores": 1
                        }, 
                        "preemptionDisabled": true
                    }, 
                    {
                        "type": "capacitySchedulerLeafQueueInfo", 
                        "capacity": 31, 
                        "usedCapacity": 0, 
                        "maxCapacity": 100, 
                        "absoluteCapacity": 31, 
                        "absoluteMaxCapacity": 100, 
                        "absoluteUsedCapacity": 0, 
                        "numApplications": 0, 
                        "queueName": "default", 
                        "state": "RUNNING", 
                        "resourcesUsed": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "hideReservationQueues": false, 
                        "nodeLabels": [
                            "*"
                        ], 
                        "numActiveApplications": 0, 
                        "numPendingApplications": 0, 
                        "numContainers": 0, 
                        "maxApplications": 3100, 
                        "maxApplicationsPerUser": 3100, 
                        "userLimit": 100, 
                        "users": null, 
                        "userLimitFactor": 1, 
                        "AMResourceLimit": {
                            "memory": 13088, 
                            "vCores": 8
                        }, 
                        "usedAMResource": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "userAMResourceLimit": {
                            "memory": 4064, 
                            "vCores": 3
                        }, 
                        "preemptionDisabled": true
                    }, 
                    {
                        "type": "capacitySchedulerLeafQueueInfo", 
                        "capacity": 15.000001, 
                        "usedCapacity": 0, 
                        "maxCapacity": 100, 
                        "absoluteCapacity": 15.000001, 
                        "absoluteMaxCapacity": 100, 
                        "absoluteUsedCapacity": 0, 
                        "numApplications": 0, 
                        "queueName": "feed_aliyun", 
                        "state": "RUNNING", 
                        "resourcesUsed": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "hideReservationQueues": false, 
                        "nodeLabels": [
                            "*"
                        ], 
                        "numActiveApplications": 0, 
                        "numPendingApplications": 0, 
                        "numContainers": 0, 
                        "maxApplications": 1500, 
                        "maxApplicationsPerUser": 7500, 
                        "userLimit": 100, 
                        "users": null, 
                        "userLimitFactor": 5, 
                        "AMResourceLimit": {
                            "memory": 12320, 
                            "vCores": 8
                        }, 
                        "usedAMResource": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "userAMResourceLimit": {
                            "memory": 9856, 
                            "vCores": 7
                        }, 
                        "preemptionDisabled": true
                    }, 
                    {
                        "type": "capacitySchedulerLeafQueueInfo", 
                        "capacity": 51, 
                        "usedCapacity": 0, 
                        "maxCapacity": 90, 
                        "absoluteCapacity": 51, 
                        "absoluteMaxCapacity": 90, 
                        "absoluteUsedCapacity": 0, 
                        "numApplications": 0, 
                        "queueName": "hot_aliyun", 
                        "state": "RUNNING", 
                        "resourcesUsed": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "hideReservationQueues": false, 
                        "nodeLabels": [
                            "*"
                        ], 
                        "numActiveApplications": 0, 
                        "numPendingApplications": 0, 
                        "numContainers": 0, 
                        "maxApplications": 5100, 
                        "maxApplicationsPerUser": 5100, 
                        "userLimit": 100, 
                        "users": null, 
                        "userLimitFactor": 1, 
                        "AMResourceLimit": {
                            "memory": 11776, 
                            "vCores": 7
                        }, 
                        "usedAMResource": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "userAMResourceLimit": {
                            "memory": 6688, 
                            "vCores": 5
                        }, 
                        "preemptionDisabled": true
                    }, 
                    {
                        "type": "capacitySchedulerLeafQueueInfo", 
                        "capacity": 1, 
                        "usedCapacity": 0, 
                        "maxCapacity": 90, 
                        "absoluteCapacity": 1, 
                        "absoluteMaxCapacity": 90, 
                        "absoluteUsedCapacity": 0, 
                        "numApplications": 0, 
                        "queueName": "push_aliyun", 
                        "state": "RUNNING", 
                        "resourcesUsed": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "hideReservationQueues": false, 
                        "nodeLabels": [
                            "*"
                        ], 
                        "numActiveApplications": 0, 
                        "numPendingApplications": 0, 
                        "numContainers": 0, 
                        "maxApplications": 100, 
                        "maxApplicationsPerUser": 100, 
                        "userLimit": 100, 
                        "users": null, 
                        "userLimitFactor": 1, 
                        "AMResourceLimit": {
                            "memory": 11776, 
                            "vCores": 7
                        }, 
                        "usedAMResource": {
                            "memory": 0, 
                            "vCores": 0
                        }, 
                        "userAMResourceLimit": {
                            "memory": 160, 
                            "vCores": 1
                        }, 
                        "preemptionDisabled": true
                    }
                ]
            }
        }
    }
}

4. 查看实时的作业列表,列表信息中也包含了作业运行的详情信息,包括作业名称、id、运行状态、起止时间,资源使用情况。

  • URL

http://emr-header-1:8088/ws/v1/cluster/apps

  • 返回结果
{
  "apps":
  {
    "app":
    [
       {
          "finishedTime" : 1326815598530,
          "amContainerLogs" : "http://host.domain.com:8042/node/containerlogs/container_1326815542473_0001_01_000001",
          "trackingUI" : "History",
          "state" : "FINISHED",
          "user" : "user1",
          "id" : "application_1326815542473_0001",
          "clusterId" : 1326815542473,
          "finalStatus" : "SUCCEEDED",
          "amHostHttpAddress" : "host.domain.com:8042",
          "progress" : 100,
          "name" : "word count",
          "startedTime" : 1326815573334,
          "elapsedTime" : 25196,
          "diagnostics" : "",
          "trackingUrl" : "http://host.domain.com:8088/proxy/application_1326815542473_0001/jobhistory/job/job_1326815542473_1_1",
          "queue" : "default",
          "allocatedMB" : 0,
          "allocatedVCores" : 0,
          "runningContainers" : 0,
          "memorySeconds" : 151730,
          "vcoreSeconds" : 103
       },
       {
          "finishedTime" : 1326815789546,
          "amContainerLogs" : "http://host.domain.com:8042/node/containerlogs/container_1326815542473_0002_01_000001",
          "trackingUI" : "History",
          "state" : "FINISHED",
          "user" : "user1",
          "id" : "application_1326815542473_0002",
          "clusterId" : 1326815542473,
          "finalStatus" : "SUCCEEDED",
          "amHostHttpAddress" : "host.domain.com:8042",
          "progress" : 100,
          "name" : "Sleep job",
          "startedTime" : 1326815641380,
          "elapsedTime" : 148166,
          "diagnostics" : "",
          "trackingUrl" : "http://host.domain.com:8088/proxy/application_1326815542473_0002/jobhistory/job/job_1326815542473_2_2",
          "queue" : "default",
          "allocatedMB" : 0,
          "allocatedVCores" : 0,
          "runningContainers" : 1,
          "memorySeconds" : 640064,
          "vcoreSeconds" : 442
       } 
    ]
  }
}

5. 统计作业扫描的数据量情况

job扫描的数据量,需要通过History Server的RESTful API查询,MapReduce的和Spark的又有一些差异。

5.1 Mapreduce job扫描数据量

  • URL

http://emr-header-1:19888/ws/v1/history/mapreduce/jobs/job_1495123166259_0962/counters

  • 返回结果
{
   "jobCounters" : {
      "id" : "job_1326381300833_2_2",
      "counterGroup" : [
         {
            "counterGroupName" : "Shuffle Errors",
            "counter" : [
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "BAD_ID"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "CONNECTION"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "IO_ERROR"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "WRONG_LENGTH"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "WRONG_MAP"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "WRONG_REDUCE"
               }
            ]
          },
         {
            "counterGroupName" : "org.apache.hadoop.mapreduce.FileSystemCounter",
            "counter" : [
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 2483,
                  "name" : "FILE_BYTES_READ"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 108525,
                  "name" : "FILE_BYTES_WRITTEN"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "FILE_READ_OPS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "FILE_LARGE_READ_OPS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "FILE_WRITE_OPS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 48,
                  "name" : "HDFS_BYTES_READ"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "HDFS_BYTES_WRITTEN"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 1,
                  "name" : "HDFS_READ_OPS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "HDFS_LARGE_READ_OPS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "HDFS_WRITE_OPS"
               }
            ]
         },
         {
            "counterGroupName" : "org.apache.hadoop.mapreduce.TaskCounter",
            "counter" : [
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 1,
                  "name" : "MAP_INPUT_RECORDS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 1200,
                  "name" : "MAP_OUTPUT_RECORDS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 4800,
                  "name" : "MAP_OUTPUT_BYTES"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 2235,
                  "name" : "MAP_OUTPUT_MATERIALIZED_BYTES"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 48,
                  "name" : "SPLIT_RAW_BYTES"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "COMBINE_INPUT_RECORDS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "COMBINE_OUTPUT_RECORDS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 1200,
                  "name" : "REDUCE_INPUT_GROUPS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 2235,
                  "name" : "REDUCE_SHUFFLE_BYTES"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 1200,
                  "name" : "REDUCE_INPUT_RECORDS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "REDUCE_OUTPUT_RECORDS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 2400,
                  "name" : "SPILLED_RECORDS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 1,
                  "name" : "SHUFFLED_MAPS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "FAILED_SHUFFLE"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 1,
                  "name" : "MERGED_MAP_OUTPUTS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 113,
                  "name" : "GC_TIME_MILLIS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 1830,
                  "name" : "CPU_MILLISECONDS"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 478068736,
                  "name" : "PHYSICAL_MEMORY_BYTES"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 2159284224,
                  "name" : "VIRTUAL_MEMORY_BYTES"
               },
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 378863616,
                  "name" : "COMMITTED_HEAP_BYTES"
               }
            ]
         },
         {
            "counterGroupName" : "org.apache.hadoop.mapreduce.lib.input.FileInputFormatCounter",
            "counter" : [
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "BYTES_READ"
               }
            ]
         },
         {
            "counterGroupName" : "org.apache.hadoop.mapreduce.lib.output.FileOutputFormatCounter",
            "counter" : [
               {
                  "reduceCounterValue" : 0,
                  "mapCounterValue" : 0,
                  "totalCounterValue" : 0,
                  "name" : "BYTES_WRITTEN"
               }
            ]
         }
      ]
   }
}

其中org.apache.hadoop.mapreduce.lib.input.FileInputFormatCounter里面的BYTES_READ为job扫描的数据量
具体参数:https://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-hs/HistoryServerRest.html#Job_Counters_API

5.2 Mapreduce job扫描数据量

  • URL

http://emr-header-1:18080/api/v1/applications/application_1495123166259_1050/executors

每个executor的totalInputBytes总和为整个job的数据扫描量。
更多参考:http://spark.apache.org/docs/latest/monitoring.html

相关实践学习
基于EMR Serverless StarRocks一键玩转世界杯
基于StarRocks构建极速统一OLAP平台
快速掌握阿里云 E-MapReduce
E-MapReduce 是构建于阿里云 ECS 弹性虚拟机之上,利用开源大数据生态系统,包括 Hadoop、Spark、HBase,为用户提供集群、作业、数据等管理的一站式大数据处理分析服务。 本课程主要介绍阿里云 E-MapReduce 的使用方法。
目录
相关文章
|
1月前
|
JSON 缓存 JavaScript
深入浅出:使用Node.js构建RESTful API
在这个数字时代,API已成为软件开发的基石之一。本文旨在引导初学者通过Node.js和Express框架快速搭建一个功能完备的RESTful API。我们将从零开始,逐步深入,不仅涉及代码编写,还包括设计原则、最佳实践及调试技巧。无论你是初探后端开发,还是希望扩展你的技术栈,这篇文章都将是你的理想指南。
|
25天前
|
JSON JavaScript 前端开发
深入浅出Node.js:从零开始构建RESTful API
在数字化时代的浪潮中,后端开发作为连接用户与数据的桥梁,扮演着至关重要的角色。本文将引导您步入Node.js的奇妙世界,通过实践操作,掌握如何使用这一强大的JavaScript运行时环境构建高效、可扩展的RESTful API。我们将一同探索Express框架的使用,学习如何设计API端点,处理数据请求,并实现身份验证机制,最终部署我们的成果到云服务器上。无论您是初学者还是有一定基础的开发者,这篇文章都将为您打开一扇通往后端开发深层知识的大门。
41 12
|
28天前
|
XML JSON 缓存
深入理解RESTful API设计原则与实践
在现代软件开发中,构建高效、可扩展的应用程序接口(API)是至关重要的。本文旨在探讨RESTful API的核心设计理念,包括其基于HTTP协议的特性,以及如何在实际应用中遵循这些原则来优化API设计。我们将通过具体示例和最佳实践,展示如何创建易于理解、维护且性能优良的RESTful服务,从而提升前后端分离架构下的开发效率和用户体验。
|
1月前
|
监控 安全 API
深入浅出:构建高效RESTful API的最佳实践
在数字化时代,API已成为连接不同软件和服务的桥梁。本文将带你深入了解如何设计和维护一个高效、可扩展且安全的RESTful API。我们将从基础概念出发,逐步深入到高级技巧,让你能够掌握创建优质API的关键要素。无论你是初学者还是有经验的开发者,这篇文章都将为你提供实用的指导和启示。让我们一起探索API设计的奥秘,打造出色的后端服务吧!
|
29天前
|
JSON 缓存 测试技术
构建高效RESTful API的后端实践指南####
本文将深入探讨如何设计并实现一个高效、可扩展且易于维护的RESTful API。不同于传统的摘要概述,本节将直接以行动指南的形式,列出构建RESTful API时必须遵循的核心原则与最佳实践,旨在为开发者提供一套直接可行的实施框架,快速提升API设计与开发能力。 ####
|
1月前
|
JavaScript NoSQL API
深入浅出Node.js:从零开始构建RESTful API
在数字化时代的浪潮中,后端开发如同一座灯塔,指引着数据的海洋。本文将带你航行在Node.js的海域,探索如何从一张白纸到完成一个功能完备的RESTful API。我们将一起学习如何搭建开发环境、设计API结构、处理数据请求与响应,以及实现数据库交互。准备好了吗?启航吧!
|
1月前
|
JSON API 数据格式
探索后端开发:从零构建简易RESTful API
在数字时代的浪潮中,后端开发如同搭建一座桥梁,连接着用户界面与数据世界。本文将引导读者步入后端开发的殿堂,通过构建一个简易的RESTful API,揭示其背后的逻辑与魅力。我们将从基础概念出发,逐步深入到实际操作,不仅分享代码示例,更探讨如何思考和解决问题,让每一位读者都能在后端开发的道路上迈出坚实的一步。
|
1月前
|
JSON API 开发者
深入理解RESTful API设计原则
在数字化时代,API已成为连接不同软件应用的桥梁。本文旨在探讨RESTful API设计的基本原则和最佳实践,帮助开发者构建高效、可扩展的网络服务接口。通过解析REST架构风格的核心概念,我们将了解如何设计易于理解和使用的API,同时保证其性能和安全性。
|
1月前
|
存储 缓存 API
深入理解RESTful API设计原则
在现代软件开发中,RESTful API已成为前后端分离架构下不可或缺的通信桥梁。本文旨在探讨RESTful API的核心设计原则,包括资源导向、无状态、统一接口、以及可缓存性等,并通过实例解析如何在实际应用中遵循这些原则来构建高效、可维护的API接口。我们将深入分析每个原则背后的设计理念,提供最佳实践指导,帮助开发者优化API设计,提升系统整体性能和用户体验。
30 0
|
1月前
|
安全 测试技术 API
构建高效RESTful API:后端开发的艺术与实践####
在现代软件开发的浩瀚星空中,RESTful API如同一座桥梁,连接着前端世界的绚丽多彩与后端逻辑的深邃复杂。本文旨在探讨如何精心打造一款既高效又易于维护的RESTful API,通过深入浅出的方式,剖析其设计原则、实现技巧及最佳实践,为后端开发者提供一份实用的指南。我们不深入晦涩的理论,只聚焦于那些能够即刻提升API品质与开发效率的关键点,让你的API在众多服务中脱颖而出。 ####
33 0