毕业设计之「神经网络与深度学习概述」(二)

简介: 首先,来说一下卷积的概念,从数学角度来看,可以简单的认为卷积是一种数学运算,在通信领域,卷积也被应用在滤波上,因此通常将卷积和滤波同等看待,卷积核也经常被称为滤波器。

卷积神经网络基础


01 - 相关基础概念


首先,来说一下卷积的概念,从数学角度来看,可以简单的认为卷积是一种数学运算,在通信领域,卷积也被应用在滤波上,因此通常将卷积和滤波同等看待,卷积核也经常被称为滤波器。


接下来通过一个例子说明卷积运算的具体操作:


【注】:动态演示参考如下网址:http://www.shipudong.com/2020/03/24/bi-ye-she-ji-nei-rong-bu-chong/


微信图片_20220611003858.gif

图3.9卷积操作演示



上述图中,输入图像大小为7*7*3,卷积核大小为3*3*3,且有两个卷积核,故最终经卷积操作之后的特征图(output volume)有两个。以第一个卷积核运算为例进行讲解,且图中步长(stride=2):


微信图片_20220611003906.png


各参数的计算方式(为了方便标记,用a来表示矩阵,i、j表示行和列):


微信图片_20220611003910.png


计算方法就是:将输入数据(取与卷积核相同大小)与分别与第一个卷积核、第二个卷积核进行卷积运算,且步长为2在输入数据上移动,其余具体计算过程不再赘述。



02 - 局部感知野


在前述文章中,我们讨论了简单的神经网络,并且知道对于全连接神经网络,它的每个神经元都与前一层的所有神经元进行连接,这种连接方式很容易造成一个不可避免的问题就是:一旦隐藏层层数增加,会带来大量的参数,最终造成无法训练,因此在本节中引入局部感知野的概念。


引入局部感知野的目的就是为了减少参数量,对于一张图片,无论是灰度图还是彩色图,我们一般认为局部像素周围的联系比较紧密(简单理解为:某一像素点及其周围的像素点差别不大),而像素点之间距离相差越远,联系越弱。所以没有必要获取到整张图片所有的信息,只需要利用局部感知野的概念获取局部的信息,并在更高层对这些信息进行综合,也可以得到全局的信息。相比全连接神经网络的方式,采用局部感知野的概念之后,参数量大大降低。



03 - 参数共享


在第二小节中我们引入了局部感知野的概念来帮助我们减少参数量,但是经过局部感知野之后,所剩余参数量还是较多,对于模型的学习训练还是非常艰难的,因此再引入参数共享的概念,对于输入图像的每一个节点,没有必要用不同的卷积核去进行卷积运算,再通过各个局部感知野连接的区域内,我们可以使用相同的参数和权值,这就是所谓的参数共享,经过局部感知野和参数共享两大优化方法,此时神经网络中的参数就可以很容易的进行训练学习了。



04 - 多卷积核


对于复杂的输入数据,通过卷积操作想要提取的特征类肯定不止一种,因此我们必须通过多个不同功能的卷积核来进行卷积操作。通过图3.9中的例子我们可以知道,图中输入数据是RGB彩色图,其中有3个通道(channel=3),且有两个卷积核,最后经卷积操作之后所得的特征图也有2个。


经过上面的介绍,可以知道多卷积核概念的引入是为了帮助我们提取更加复杂图像的特征,本质上还是本文上述所讲内容的一个应用。



05 - 池化


首先,来讨论一个例子,对于一张500*500的图片,用100个卷积核来提取图像的不同特征,卷积核大小为3*3,步长为1,并且默认不再图像周围做填充,根据公式 计算得到(W=500,F=3,p=0,s=1)经卷积之后的图像大小为498*498,总结一下,100个卷积核可以得到100个大小为498*498的图片,即24800400(498*498*100)的卷积特征向量,对如此量级的特征个数去进行分类,我们很容易造成过拟合现象的发生,因此我们在本小节中引入池化的概念。


池化的原理就是根据相邻元素具有相似性,因此可以将相邻元素进行合并,从而大幅的减少特征个数。池化中包括平均池化和最大池化操作,在我们本论文的案例中,我们使用的是最大池化操作,其过程是:将输入数据经过池化操作,并只保留池化区域中最大的一个值,其余均被忽略掉。


06 - 多层卷积


本节关于多层卷积概念的引入等同于前述章节中对于多卷积核概念的引入,以人脸识别的例子为例,我们需要提取人脸的各种特征,包括眉毛、鼻子、嘴巴、酒窝等,这些还属于较为高级的特征,对于机器来说,我们需要继续寻找更为低级的特征来供机器进行学习,为此为了对一个物体进行特征提取我们需要多层的卷积操作,并且通常我们还会在每一个卷积层后面加上非线性函数(ReLU,本论文的例子中关于对AlexNet模型的介绍,在每一层后面都使用了ReLU)。



07 - 池化层和卷积层的反向传播


在前述小节中,我们了解过反向传播的概念,并且知道首先通过前向计算我们可以得到各个节点的激活函数的值,接着我们从最后一层逐层向前计算残差值,然后根据残差值求出对应偏导数的值,并最后更新网络中的参数(权值w和偏置项b)。


然而,全连接神经网络与卷积神经网络的区别就是:在卷积神经网络中有卷积层和池化层的存在,所以在这两层中肯定会有反向传播的概念。


首先,我们来简单介绍池化层反向传播的概念。上述内容提到过,我们本论文案例中使用的是最大池化操作,我们不讨论此时的前向传播,假设此时经过池化之后的残差值已经从最后一层的反向传播计算得到(我们假设前向计算过程中每一区域的最大值我们已经标注出来了),则池化层(最大池化层)的反向传播就是逐层算出残差值,然后将残差值传递给已标注的最大位置的神经元。


接着我们来介绍卷积层的反向传播残差值的计算,具体公式我们这里不做推导,仅以如何计算为主:


卷积之前的矩阵:


微信图片_20220611003915.png


卷积核矩阵:


微信图片_20220611003919.png

卷积之后的残差值:


微信图片_20220611003923.png


我们现在需要计算卷积之前各个节点的残差:


微信图片_20220611003927.png


其余计算过程我们不再进行计算,最终所得卷积之前各个节点的残差值为:


微信图片_20220611003931.png


计算得出残差值之后,我们就可以根据公式更新卷积核的参数。


TensorFlow 2.0版本中的卷积神经网络


在本系列推文的TensorFlow 2.0 概述中,我们TensorFlow 2.0版本中的一些API及其基础知识有了一定的了解,在本小节中论文将介绍一下在本文中所涉及的两个案例中所用到的关于卷积神经网络中的一些API。


模型搭建层的核心代码如下所示:


model = tf.keras.models.Sequential([
  tf.keras.layers.Conv2D(input_shape = (28,28,1),filters = 32,kernel_size = 5,strides = 1,padding = "same",activation = "relu"),  # 28*28
  tf.keras.layers.MaxPool2D(pool_size = 2,strides = 2,padding = 'same'),  # 14*14
  tf.keras.layers.Conv2D(64,5,strides=1,padding='same',activation='relu'),  # 14*14
  tf.keras.layers.MaxPool2D(2,2,'same'),  # 7*7
  tf.keras.layers.Conv2D(64,5,strides=1,padding='same',activation='relu'), # 7*7
  tf.keras.layers.MaxPool2D(2,2,'same'), # 3*3
  tf.keras.layers.Flatten(),  # 64*3*3
  tf.keras.layers.Dense(1024,activation='relu'),
  tf.keras.layers.Dropout(0.5),
  tf.keras.layers.Dense(10,activation = 'softmax'),
])


上述代码中,我们通过Sequential来顺序构建模型,通过高阶APItf.keras.layers来搭建每一层需要的网络。如下是TensorFlow 2.0版本官网对于各API 的介绍:


微信图片_20220611003936.png

图3.10 相关API操作



相关文章
|
3天前
|
机器学习/深度学习 自然语言处理 数据安全/隐私保护
深度学习中的艺术与科学:探索神经网络的奥秘
本文将带您走进深度学习的奇妙世界,一探神经网络背后的科学原理和艺术创造。我们将从基础概念出发,逐步深入到模型训练的技巧,以及如何应对过拟合等常见问题。通过实例分析,我们将展示深度学习技术在图像识别和自然语言处理等领域的应用,并讨论其在未来科技发展中的潜在影响。让我们一同解锁深度学习的力量,发现它如何塑造我们的数字世界。
|
5天前
|
机器学习/深度学习 传感器 自然语言处理
深度学习的魔法:如何用神经网络解锁数据的秘密
在这个数字信息爆炸的时代,深度学习技术如同一把钥匙,揭开了数据隐藏的层层秘密。本文将深入浅出地探讨深度学习的核心概念、关键技术和实际应用,带领读者领略这一领域的奥秘与魅力。通过生动的比喻和直观的解释,我们将一起走进神经网络的世界,看看这些由数据驱动的“大脑”是如何学习和成长的。无论你是科技爱好者还是行业新手,这篇文章都将为你打开一扇通往未来的大门。
|
2天前
|
机器学习/深度学习 人工智能 PyTorch
【深度学习】使用PyTorch构建神经网络:深度学习实战指南
PyTorch是一个开源的Python机器学习库,特别专注于深度学习领域。它由Facebook的AI研究团队开发并维护,因其灵活的架构、动态计算图以及在科研和工业界的广泛支持而受到青睐。PyTorch提供了强大的GPU加速能力,使得在处理大规模数据集和复杂模型时效率极高。
112 59
|
1天前
|
存储 网络协议 安全
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
【深度学习】深度学习的概述及应用,附带代码示例
深度学习(Deep Learning,简称DL)是机器学习领域中的一个重要分支,其目标是通过模拟人脑神经网络的工作机制,构建多层次的抽象特征表示,使机器能够自动从原始数据中提取关键信息,从而实现高精度的任务执行。深度学习通过多层神经网络结构及其训练方式,实现了从低级像素级别到高级概念级别的递进式知识层次。 深度学习的主要组件包括输入层、隐藏层和输出层。隐藏层的数量和层数决定了模型的复杂度和表达能力。在训练过程中,权重更新和梯度下降法是关键步骤,目的是最小化损失函数,提高预测精度。深度学习主要基于反向传播算法(BP Algorithm)来优化模型参数,通过正向传播、损失计算、反向传播和梯度下降等
20 8
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
【深度学习】AudioLM音频生成模型概述及应用场景,项目实践及案例分析
AudioLM(Audio Language Model)是一种基于深度学习的音频生成模型,它使用自回归或变分自回归的方法来生成连续的音频信号。这类模型通常建立在Transformer架构或者类似的序列到序列(Seq2Seq)框架上,通过学习大量音频数据中的统计规律,能够生成具有高保真度和创造性的音频片段。AudioLM模型不仅能够合成音乐、语音,还能生成自然界的声音、环境噪声等,其应用广泛,涵盖了娱乐、教育、辅助技术、内容创作等多个领域。
8 1
|
5天前
|
机器学习/深度学习 算法 自动驾驶
深度学习的奥秘:探索神经网络的黑盒子
深度学习技术如同一扇打开未知世界的大门,其背后的复杂算法和庞大数据让许多人感到好奇又困惑。本文以通俗易懂的语言,逐步揭开深度学习的神秘面纱,从基础概念到实际应用,引导读者理解并欣赏这一技术的奇妙之处。
14 1
|
5天前
|
机器学习/深度学习 算法
深度学习中的艺术与科学:探索神经网络的奥秘
本文以浅显易懂的方式介绍了深度学习的基本概念,并逐步深入到其背后的复杂数学原理。通过生动的比喻和直观的解释,文章揭示了深度学习如何模仿人脑处理信息,并探讨了它在图像识别、语音处理等领域的应用。同时,文章还讨论了深度学习面临的挑战和未来的发展方向,旨在激发读者对这一前沿技术的兴趣和思考。
|
4天前
|
机器学习/深度学习 人工智能 调度
显著提升深度学习 GPU 利用率,阿里云拿下国际网络顶会优胜奖!
显著提升深度学习 GPU 利用率,阿里云拿下国际网络顶会优胜奖!
19 0
|
3天前
|
SQL 安全 网络安全
网络安全与信息安全:保护数字世界的基石
【8月更文挑战第16天】在数字化时代,网络安全与信息安全的重要性日益凸显。本文将深入探讨网络安全漏洞、加密技术以及安全意识等关键领域,旨在为读者提供全面的知识分享和实践指导。我们将从网络攻击的常见类型及其防御措施出发,进一步讨论加密技术在保障数据安全中的作用,并强调提升个人和企业的安全意识的必要性。通过分析真实案例,本文旨在帮助读者构建更加坚固的网络安全防线,共同守护我们的数字生活。