基于Spring Boot的线程池监控方案

简介: 基于Spring Boot的线程池监控方案

一、前言


这篇是推动大家异步编程的思想的线程池的准备篇,要做好监控,让大家使用无后顾之忧,敬畏生产。

二、为什么需要对线程池进行监控


Java线程池作为最常使用到的并发工具,相信大家都不陌生,但是你真的确定使用对了吗?大名鼎鼎的阿里Java代码规范要求我们不使用 Executors来快速创建线程池,但是抛弃Executors,使用其它方式创建线程池就一定不会出现问题吗?本质上对于我们来说线程池本身的运行过程是一个黑盒,我们没办法了解线程池中的运行状态时,出现问题没有办法及时判断和预警。面对这种黑盒操作必须通过监控方式让其透明化,这样对我们来说才能更好的使用好线程池。因此必须对线程池做监控。

三、如何做线程池的监控


对于如何做监控,本质就是涉及三点,分别是数据采集、数据存储以及大盘的展示,接下来我们分说下这三点;

数据采集

采集什么数据,对于我们来说需要采集就是黑盒的数据,什么又是线程池的黑盒数据,其实也就是整个线程处理的整个流程,在整个流程中,我们可以通过ThreadPoolExecutor中的七个方法获取数据,通过这七个方法采集到的数据就可以使线程池的执行过程透明化。

  1. getCorePoolSize():获取核心线程数;
  2. getMaximumPoolSize:获取最大线程数;
  3. getQueue():获取线程池中的阻塞队列,并通过阻塞队列中的方法获取队列长度、元素个数等;
  4. getPoolSize():获取线程池中的工作线程数(包括核心线程和非核心线程);
  5. getActiveCount():获取活跃线程数,也就是正在执行任务的线程;
  6. getLargestPoolSize():获取线程池曾经到过的最大工作线程数;
  7. getTaskCount():获取历史已完成以及正在执行的总的任务数量;

除了我们了解的这些流程以外,ThreadPoolExecutor中还提供了三种钩子函数,

  1. beforeExecute():Worker线程执行任务之前会调用的方法;
  2. afterExecute():在Worker线程执行任务之后会调用的方法;
  3. terminated():当线程池从运行状态变更到TERMINATED状态之前调用的方法;

对于beforeExecute和afterExecute可以理解为使用Aop监听线程执行的时间,这样子我们可以对每个线程运行的时间整体做监控,terminated可以理解为线程关闭时候的监控,这样我们就可以整体获取采集到线程池生命周期的所有数据了。

数据存储以及大盘的展示

对于存储我们这个比较适合采用时序性数据库,此外现在很多成熟的监控产品都可以满足我们大屏展示的诉求,这里推荐下美团Cat和Prometheus,这里不展开进行讲解,大家可以根据自己公司的监控产品进行选择,对于不同的方案采取的存储形式会有些差异,甚至自己都可以自定义实现一个功能,反正难度不大。

四、进一步扩展以及思考


在实际的项目开发中我们会遇到以下场景:

  1. 不同的业务采用同一个线程池,这样如果某个服务阻塞,会影响到整体共用线程池的所有服务,会触发线程池的拒绝策略;
  2. 流量突然增加,需要动态调整线程池的参数,这个时候又不能重启;

针对这两种场景,我们对线程池再次进行了深入的思考:

  1. 如何合理配置线程池参数;
  2. 如何动态调整线程池参数;
  3. 如何给不同的服务之间做线程池的隔离;

如何合理配置线程池参数

关于这个问题面试的时候也是经常被问到,我只能说这个问题开始就是一个坑,针对与CPU密集型和I/O密集型,线程池的参数是有不同设计的,也不是遵守几个公式就可以搞定,当然可以参考,我认为对于线程池合理的参数的配置是经过多次调整得到的,甚至增加和减少业务都会影响一些参数,我不太建议大家每天背书式的CPU密集型就是N+1,非CPU密集型就是2N,因此我们更希望看到线程池动态配置。

如何动态调整线程池参数

关于如何动态调整线程池,还是回到我们场景问题的解决上,对于流量突增核心就是提升线程池的处理速度,那如何提升线程池的处理速度,有两种方式,一种是加快业务的处理,也就是消费的快,显然这种在运行的业务中我们想改变还是比较困难,这个可以作为复盘的重点;还有一种就是增加消费者,增加消费者的重点就是调整核心线程数以及非核心线程数的数量。

img

居于这种思考,这个时候我们需要看下ThreadPoolExecutor线程池源码,首先看下开始定义的变量,通过变量的设计我们就会发现大师就是大师,大师通过AtomicInteger修饰的ctl变量,高3位存储了线程池的状态,低29存储线程的个数,通过一个变量完成两件事情,完成状态判断以及限制线程最大个数。使用一个HashSet存储Worker的引用,而Worker继承了AbstractQueuedSynchronizer,实现一个一个不可冲入的独占锁保证线程的安全性。

img

//用来标记线程池状态(高3位),线程个数(低29位)     
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
//工作状态存储在高3位中
private static final int COUNT_BITS = Integer.SIZE - 3;
//线程个数所能表达的最大数值
private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
//线程池状态
//RUNNING -1 能够接收新任务,也可以处理阻塞队列中的任务
private static final int RUNNING    = -1 << COUNT_BITS;
//SHUTDOWN 0 不可以接受新任务,继续处理阻塞队列中的任务
private static final int SHUTDOWN   =  0 << COUNT_BITS;
//STOP 1 不接收新任务,不处理阻塞队列中的任务,并且会中断正在处理的任务
private static final int STOP       =  1 << COUNT_BITS;
//TIDYING 2 所有任务已经中止,且工作线程数量为0,最后变迁到这个状态的线程将要执行terminated()钩子方法,只会有一个线程执行这个方法;
private static final int TIDYING    =  2 << COUNT_BITS;
//TERMINATED 3 中止状态,已经执行完terminated()钩子方法
private static final int TERMINATED =  3 << COUNT_BITS;
//任务队列,当线程池中的线程达到核心线程数量时,再提交任务 就会直接提交到 workQueue
private final BlockingQueue<Runnable> workQueue;
//线程池全局锁,增加worker减少worker时需要持有mainLock,修改线程池运行状态时,也需要
private final ReentrantLock mainLock = new ReentrantLock();
//线程池中真正存放worker的地方。
private final HashSet<Worker> workers = new HashSet<Worker>();
private final Condition termination = mainLock.newCondition();
//记录线程池生命周期内 线程数最大值
private int largestPoolSize;
//记录线程池所完成任务总数
private long completedTaskCount;
//创建线程会使用线程工厂
private volatile ThreadFactory threadFactory;
//拒绝策略
private volatile RejectedExecutionHandler handler;
//存活时间
private volatile long keepAliveTime;
//控制核心线程数量内的线程 是否可以被回收。true 可以,false不可以。
private volatile boolean allowCoreThreadTimeOut;
//核心线程池数量
private volatile int corePoolSize;
//线程池最大数量
private volatile int maximumPoolSize;

我们的重点看的是volatile修饰的corePoolSize、maximumPoolSize以及keepAliveTime,当然threadFactory和handler也可以看下,不过这两个不是我们解决动态调整线程池的关键。对于这些volatile修饰的关键的变量,从并发角度思考的,必然是有并发读写的操作才使用volatile修饰的,在指标采集中我们看到其get的方法,对于写的操作我们可以猜测肯定提供了set的方式,这个时候我们可以搜索下setCorePoolSize,果不其然我们真的搜索到了。

public void setCorePoolSize(int corePoolSize) {
        if (corePoolSize < 0)
            throw new IllegalArgumentException();
        int delta = corePoolSize - this.corePoolSize;
        this.corePoolSize = corePoolSize;
        //新设置的corePoolSize小于当前核心线程数的时候
        //会调用interruptIdleWorkers方法来中断空闲的工作线程
        if (workerCountOf(ctl.get()) > corePoolSize)
            interruptIdleWorkers();
        else if (delta > 0) {
            //当设置的值大于当前值的时候核心线程数的时候
            //按照等待队列中的任务数量来创建新的工作线程
            int k = Math.min(delta, workQueue.size());
            while (k-- > 0 && addWorker(null, true)) {
                if (workQueue.isEmpty())
                    break;
            }
        }
    }

接下来我们看下interruptIdleWorkers的源码,此处源码使用ReentrantLock可重入锁,因为Worker的是通过一个全局的HashSer存储,这里通过ReentrantLock保证线程安全。

private void interruptIdleWorkers(boolean onlyOne) {
        //可重入锁
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            for (Worker w : workers) {
                Thread t = w.thread;
                if (!t.isInterrupted() && w.tryLock()) {
                    try {
                        //中断当前线程
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    } finally {
                        w.unlock();
                    }
                }
                if (onlyOne)
                    break;
            }
        } finally {
            mainLock.unlock();
        }
    }

接下来我们在验证一下是否存在其他相关的参数设置,如下:

public void setMaximumPoolSize(int maximumPoolSize) {
        if (maximumPoolSize <= 0 || maximumPoolSize < corePoolSize)
            throw new IllegalArgumentException();
        this.maximumPoolSize = maximumPoolSize;
        if (workerCountOf(ctl.get()) > maximumPoolSize)
            interruptIdleWorkers();
    }
    public void setKeepAliveTime(long time, TimeUnit unit) {
        if (time < 0)
            throw new IllegalArgumentException();
        if (time == 0 && allowsCoreThreadTimeOut())
            throw new IllegalArgumentException("Core threads must have nonzero keep alive times");
        long keepAliveTime = unit.toNanos(time);
        long delta = keepAliveTime - this.keepAliveTime;
        this.keepAliveTime = keepAliveTime;
        if (delta < 0)
            interruptIdleWorkers();
    }
    public void setRejectedExecutionHandler(RejectedExecutionHandler handler) {
        if (handler == null)
            throw new NullPointerException();
        this.handler = handler;
    }

这里我们会发现一个问题BlockingQueue的队列容量不能修改,看到美团的文章提供的一个可修改的队列ResizableCapacityLinkedBlockingQueue,于是乎去看了一下LinkedBlockingQueue的源码,发现了关于capacity是一个final修饰的,这个时候我就思考一番,这个地方采用volatile修饰,对外暴露可修改,这样就实现了动态修改阻塞队列的大小。

img

如何给不同的服务之间做线程池的隔离

img

关于如何给不同服务之间做线程池的隔离,这里我们可以采用Hystrix的舱壁模式,也就是说针对不同服务类型的服务单独创建线程池,这样就可以实现服务之间不相互影响,不会因为某个服务导致整体的服务影响都阻塞。

五、实现方案


聊了这么多前置的知识储备,接下来我们来聊聊实现方案,整体的实现方案我们建立在Spring Boot的基础实现,采用Spring Cloud刷新动态配置,采用该方式比较合适单体应用,对于有Appllo和Nacos可以通过监听配置方式的来动态刷新。

  1. Maven依赖如下;
<dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.cloud</groupId>
            <artifactId>spring-cloud-context</artifactId>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.12</version>
        </dependency>
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-api</artifactId>
            <version>1.7.5</version>
        </dependency>
        <dependency>
            <groupId>ch.qos.logback</groupId>
            <artifactId>logback-core</artifactId>
            <version>1.2.3</version>
        </dependency>
        <dependency>
            <groupId>ch.qos.logback</groupId>
            <artifactId>logback-classic</artifactId>
            <version>1.2.3</version>
        </dependency>
    </dependencies>
    <dependencyManagement>
        <dependencies>
            <dependency>
                <groupId>org.springframework.cloud</groupId>
                <artifactId>spring-cloud-dependencies</artifactId>
                <version>Hoxton.SR7</version>
                <type>pom</type>
                <scope>import</scope>
            </dependency>
        </dependencies>
    </dependencyManagement>
  1. 配置信息如下:
monitor.threadpool.executors[0].thread-pool-name=first-monitor-thread-pool
monitor.threadpool.executors[0].core-pool-size=4
monitor.threadpool.executors[0].max-pool-size=8
monitor.threadpool.executors[0].queue-capacity=100
monitor.threadpool.executors[1].thread-pool-name=second-monitor-thread-pool
monitor.threadpool.executors[1].core-pool-size=2
monitor.threadpool.executors[1].max-pool-size=4
monitor.threadpool.executors[1].queue-capacity=40
/**
 * 线程池配置
 *
 * @author wangtongzhou 
 * @since 2022-03-11 21:41
 */
@Data
public class ThreadPoolProperties {
    /**
     * 线程池名称
     */
    private String threadPoolName;
    /**
     * 核心线程数
     */
    private Integer corePoolSize = Runtime.getRuntime().availableProcessors();
    /**
     * 最大线程数
     */
    private Integer maxPoolSize;
    /**
     * 队列最大数量
     */
    private Integer queueCapacity;
    /**
     * 拒绝策略
     */
    private String rejectedExecutionType = "AbortPolicy";
    /**
     * 空闲线程存活时间
     */
    private Long keepAliveTime = 1L;
    /**
     * 空闲线程存活时间单位
     */
    private TimeUnit unit = TimeUnit.MILLISECONDS;
}
/**
 * 动态刷新线程池配置
 *
 * @author wangtongzhou 
 * @since 2022-03-13 14:09
 */
@ConfigurationProperties(prefix = "monitor.threadpool")
@Data
@Component
public class DynamicThreadPoolProperties {
    private List<ThreadPoolProperties> executors;
}
  1. 自定可修改阻塞队列大小的方式如下:
/**
 * 可重新设定队列大小的阻塞队列
 *
 * @author wangtongzhou 
 * @since 2022-03-13 11:54
 */
public class ResizableCapacityLinkedBlockingQueue<E> extends AbstractQueue<E>
        implements BlockingDeque<E>, java.io.Serializable {
    /*
     * Implemented as a simple doubly-linked list protected by a
     * single lock and using conditions to manage blocking.
     *
     * To implement weakly consistent iterators, it appears we need to
     * keep all Nodes GC-reachable from a predecessor dequeued Node.
     * That would cause two problems:
     * - allow a rogue Iterator to cause unbounded memory retention
     * - cause cross-generational linking of old Nodes to new Nodes if
     *   a Node was tenured while live, which generational GCs have a
     *   hard time dealing with, causing repeated major collections.
     * However, only non-deleted Nodes need to be reachable from
     * dequeued Nodes, and reachability does not necessarily have to
     * be of the kind understood by the GC.  We use the trick of
     * linking a Node that has just been dequeued to itself.  Such a
     * self-link implicitly means to jump to "first" (for next links)
     * or "last" (for prev links).
     */
    /*
     * We have "diamond" multiple interface/abstract class inheritance
     * here, and that introduces ambiguities. Often we want the
     * BlockingDeque javadoc combined with the AbstractQueue
     * implementation, so a lot of method specs are duplicated here.
     */
    private static final long serialVersionUID = -387911632671998426L;
    /**
     * Doubly-linked list node class
     */
    static final class Node<E> {
        /**
         * The item, or null if this node has been removed.
         */
        E item;
        /**
         * One of:
         * - the real predecessor Node
         * - this Node, meaning the predecessor is tail
         * - null, meaning there is no predecessor
         */
        Node<E> prev;
        /**
         * One of:
         * - the real successor Node
         * - this Node, meaning the successor is head
         * - null, meaning there is no successor
         */
        Node<E> next;
        Node(E x) {
            item = x;
        }
    }
    /**
     * Pointer to first node.
     * Invariant: (first == null && last == null) ||
     * (first.prev == null && first.item != null)
     */
    transient Node<E> first;
    /**
     * Pointer to last node.
     * Invariant: (first == null && last == null) ||
     * (last.next == null && last.item != null)
     */
    transient Node<E> last;
    /**
     * Number of items in the deque
     */
    private transient int count;
    /**
     * Maximum number of items in the deque
     */
    private volatile int capacity;
    public int getCapacity() {
        return capacity;
    }
    public void setCapacity(int capacity) {
        this.capacity = capacity;
    }
    /**
     * Main lock guarding all access
     */
    final ReentrantLock lock = new ReentrantLock();
    /**
     * Condition for waiting takes
     */
    private final Condition notEmpty = lock.newCondition();
    /**
     * Condition for waiting puts
     */
    private final Condition notFull = lock.newCondition();
    /**
     * Creates a {@code ResizableCapacityLinkedBlockIngQueue} with a capacity of
     * {@link Integer#MAX_VALUE}.
     */
    public ResizableCapacityLinkedBlockingQueue() {
        this(Integer.MAX_VALUE);
    }
    /**
     * Creates a {@code ResizableCapacityLinkedBlockIngQueue} with the given (fixed) capacity.
     *
     * @param capacity the capacity of this deque
     * @throws IllegalArgumentException if {@code capacity} is less than 1
     */
    public ResizableCapacityLinkedBlockingQueue(int capacity) {
        if (capacity <= 0) {
            throw new IllegalArgumentException();
        }
        this.capacity = capacity;
    }
    /**
     * Creates a {@code ResizableCapacityLinkedBlockIngQueue} with a capacity of
     * {@link Integer#MAX_VALUE}, initially containing the elements of
     * the given collection, added in traversal order of the
     * collection's iterator.
     *
     * @param c the collection of elements to initially contain
     * @throws NullPointerException if the specified collection or any
     *                              of its elements are null
     */
    public ResizableCapacityLinkedBlockingQueue(Collection<? extends E> c) {
        this(Integer.MAX_VALUE);
        final ReentrantLock lock = this.lock;
        lock.lock(); // Never contended, but necessary for visibility
        try {
            for (E e : c) {
                if (e == null) {
                    throw new NullPointerException();
                }
                if (!linkLast(new Node<E>(e))) {
                    throw new IllegalStateException("Deque full");
                }
            }
        } finally {
            lock.unlock();
        }
    }
    // Basic linking and unlinking operations, called only while holding lock
    /**
     * Links node as first element, or returns false if full.
     */
    private boolean linkFirst(Node<E> node) {
        // assert lock.isHeldByCurrentThread();
        if (count >= capacity) {
            return false;
        }
        Node<E> f = first;
        node.next = f;
        first = node;
        if (last == null) {
            last = node;
        } else {
            f.prev = node;
        }
        ++count;
        notEmpty.signal();
        return true;
    }
    /**
     * Links node as last element, or returns false if full.
     */
    private boolean linkLast(Node<E> node) {
        // assert lock.isHeldByCurrentThread();
        if (count >= capacity) {
            return false;
        }
        Node<E> l = last;
        node.prev = l;
        last = node;
        if (first == null) {
            first = node;
        } else {
            l.next = node;
        }
        ++count;
        notEmpty.signal();
        return true;
    }
    /**
     * Removes and returns first element, or null if empty.
     */
    private E unlinkFirst() {
        // assert lock.isHeldByCurrentThread();
        Node<E> f = first;
        if (f == null) {
            return null;
        }
        Node<E> n = f.next;
        E item = f.item;
        f.item = null;
        f.next = f; // help GC
        first = n;
        if (n == null) {
            last = null;
        } else {
            n.prev = null;
        }
        --count;
        notFull.signal();
        return item;
    }
    /**
     * Removes and returns last element, or null if empty.
     */
    private E unlinkLast() {
        // assert lock.isHeldByCurrentThread();
        Node<E> l = last;
        if (l == null) {
            return null;
        }
        Node<E> p = l.prev;
        E item = l.item;
        l.item = null;
        l.prev = l; // help GC
        last = p;
        if (p == null) {
            first = null;
        } else {
            p.next = null;
        }
        --count;
        notFull.signal();
        return item;
    }
    /**
     * Unlinks x.
     */
    void unlink(Node<E> x) {
        // assert lock.isHeldByCurrentThread();
        Node<E> p = x.prev;
        Node<E> n = x.next;
        if (p == null) {
            unlinkFirst();
        } else if (n == null) {
            unlinkLast();
        } else {
            p.next = n;
            n.prev = p;
            x.item = null;
            // Don't mess with x's links.  They may still be in use by
            // an iterator.
            --count;
            notFull.signal();
        }
    }
    // BlockingDeque methods
    /**
     * @throws IllegalStateException if this deque is full
     * @throws NullPointerException  {@inheritDoc}
     */
    @Override
    public void addFirst(E e) {
        if (!offerFirst(e)) {
            throw new IllegalStateException("Deque full");
        }
    }
    /**
     * @throws IllegalStateException if this deque is full
     * @throws NullPointerException  {@inheritDoc}
     */
    @Override
    public void addLast(E e) {
        if (!offerLast(e)) {
            throw new IllegalStateException("Deque full");
        }
    }
    /**
     * @throws NullPointerException {@inheritDoc}
     */
    @Override
    public boolean offerFirst(E e) {
        if (e == null) {
            throw new NullPointerException();
        }
        Node<E> node = new Node<E>(e);
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            return linkFirst(node);
        } finally {
            lock.unlock();
        }
    }
    /**
     * @throws NullPointerException {@inheritDoc}
     */
    @Override
    public boolean offerLast(E e) {
        if (e == null) throw new NullPointerException();
        Node<E> node = new Node<E>(e);
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            return linkLast(node);
        } finally {
            lock.unlock();
        }
    }
    /**
     * @throws NullPointerException {@inheritDoc}
     * @throws InterruptedException {@inheritDoc}
     */
    @Override
    public void putFirst(E e) throws InterruptedException {
        if (e == null) {
            throw new NullPointerException();
        }
        Node<E> node = new Node<E>(e);
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            while (!linkFirst(node)) {
                notFull.await();
            }
        } finally {
            lock.unlock();
        }
    }
    /**
     * @throws NullPointerException {@inheritDoc}
     * @throws InterruptedException {@inheritDoc}
     */
    @Override
    public void putLast(E e) throws InterruptedException {
        if (e == null) {
            throw new NullPointerException();
        }
        Node<E> node = new Node<E>(e);
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            while (!linkLast(node)) {
                notFull.await();
            }
        } finally {
            lock.unlock();
        }
    }
    /**
     * @throws NullPointerException {@inheritDoc}
     * @throws InterruptedException {@inheritDoc}
     */
    @Override
    public boolean offerFirst(E e, long timeout, TimeUnit unit)
            throws InterruptedException {
        if (e == null) {
            throw new NullPointerException();
        }
        Node<E> node = new Node<E>(e);
        long nanos = unit.toNanos(timeout);
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            while (!linkFirst(node)) {
                if (nanos <= 0) {
                    return false;
                }
                nanos = notFull.awaitNanos(nanos);
            }
            return true;
        } finally {
            lock.unlock();
        }
    }
    /**
     * @throws NullPointerException {@inheritDoc}
     * @throws InterruptedException {@inheritDoc}
     */
    @Override
    public boolean offerLast(E e, long timeout, TimeUnit unit)
            throws InterruptedException {
        if (e == null) throw new NullPointerException();
        Node<E> node = new Node<E>(e);
        long nanos = unit.toNanos(timeout);
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            while (!linkLast(node)) {
                if (nanos <= 0) {
                    return false;
                }
                nanos = notFull.awaitNanos(nanos);
            }
            return true;
        } finally {
            lock.unlock();
        }
    }
    /**
     * @throws NoSuchElementException {@inheritDoc}
     */
    @Override
    public E removeFirst() {
        E x = pollFirst();
        if (x == null) {
            throw new NoSuchElementException();
        }
        return x;
    }
    /**
     * @throws NoSuchElementException {@inheritDoc}
     */
    @Override
    public E removeLast() {
        E x = pollLast();
        if (x == null) {
            throw new NoSuchElementException();
        }
        return x;
    }
    @Override
    public E pollFirst() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            return unlinkFirst();
        } finally {
            lock.unlock();
        }
    }
    @Override
    public E pollLast() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            return unlinkLast();
        } finally {
            lock.unlock();
        }
    }
    @Override
    public E takeFirst() throws InterruptedException {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            E x;
            while ((x = unlinkFirst()) == null) {
                notEmpty.await();
            }
            return x;
        } finally {
            lock.unlock();
        }
    }
    @Override
    public E takeLast() throws InterruptedException {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            E x;
            while ((x = unlinkLast()) == null) {
                notEmpty.await();
            }
            return x;
        } finally {
            lock.unlock();
        }
    }
    @Override
    public E pollFirst(long timeout, TimeUnit unit)
            throws InterruptedException {
        long nanos = unit.toNanos(timeout);
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            E x;
            while ((x = unlinkFirst()) == null) {
                if (nanos <= 0) {
                    return null;
                }
                nanos = notEmpty.awaitNanos(nanos);
            }
            return x;
        } finally {
            lock.unlock();
        }
    }
    @Override
    public E pollLast(long timeout, TimeUnit unit)
            throws InterruptedException {
        long nanos = unit.toNanos(timeout);
        final ReentrantLock lock = this.lock;
        lock.lockInterruptibly();
        try {
            E x;
            while ((x = unlinkLast()) == null) {
                if (nanos <= 0) {
                    return null;
                }
                nanos = notEmpty.awaitNanos(nanos);
            }
            return x;
        } finally {
            lock.unlock();
        }
    }
    /**
     * @throws NoSuchElementException {@inheritDoc}
     */
    @Override
    public E getFirst() {
        E x = peekFirst();
        if (x == null) {
            throw new NoSuchElementException();
        }
        return x;
    }
    /**
     * @throws NoSuchElementException {@inheritDoc}
     */
    @Override
    public E getLast() {
        E x = peekLast();
        if (x == null) {
            throw new NoSuchElementException();
        }
        return x;
    }
    @Override
    public E peekFirst() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            return (first == null) ? null : first.item;
        } finally {
            lock.unlock();
        }
    }
    @Override
    public E peekLast() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            return (last == null) ? null : last.item;
        } finally {
            lock.unlock();
        }
    }
    @Override
    public boolean removeFirstOccurrence(Object o) {
        if (o == null) {
            return false;
        }
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            for (Node<E> p = first; p != null; p = p.next) {
                if (o.equals(p.item)) {
                    unlink(p);
                    return true;
                }
            }
            return false;
        } finally {
            lock.unlock();
        }
    }
    @Override
    public boolean removeLastOccurrence(Object o) {
        if (o == null) {
            return false;
        }
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            for (Node<E> p = last; p != null; p = p.prev) {
                if (o.equals(p.item)) {
                    unlink(p);
                    return true;
                }
            }
            return false;
        } finally {
            lock.unlock();
        }
    }
    // BlockingQueue methods
    /**
     * Inserts the specified element at the end of this deque unless it would
     * violate capacity restrictions.  When using a capacity-restricted deque,
     * it is generally preferable to use method {@link #offer(Object) offer}.
     *
     * <p>This method is equivalent to {@link #addLast}.
     *
     * @throws IllegalStateException if this deque is full
     * @throws NullPointerException  if the specified element is null
     */
    @Override
    public boolean add(E e) {
        addLast(e);
        return true;
    }
    /**
     * @throws NullPointerException if the specified element is null
     */
    @Override
    public boolean offer(E e) {
        return offerLast(e);
    }
    /**
     * @throws NullPointerException {@inheritDoc}
     * @throws InterruptedException {@inheritDoc}
     */
    @Override
    public void put(E e) throws InterruptedException {
        putLast(e);
    }
    /**
     * @throws NullPointerException {@inheritDoc}
     * @throws InterruptedException {@inheritDoc}
     */
    @Override
    public boolean offer(E e, long timeout, TimeUnit unit)
            throws InterruptedException {
        return offerLast(e, timeout, unit);
    }
    /**
     * Retrieves and removes the head of the queue represented by this deque.
     * This method differs from {@link #poll poll} only in that it throws an
     * exception if this deque is empty.
     *
     * <p>This method is equivalent to {@link #removeFirst() removeFirst}.
     *
     * @return the head of the queue represented by this deque
     * @throws NoSuchElementException if this deque is empty
     */
    @Override
    public E remove() {
        return removeFirst();
    }
    @Override
    public E poll() {
        return pollFirst();
    }
    @Override
    public E take() throws InterruptedException {
        return takeFirst();
    }
    @Override
    public E poll(long timeout, TimeUnit unit) throws InterruptedException {
        return pollFirst(timeout, unit);
    }
    /**
     * Retrieves, but does not remove, the head of the queue represented by
     * this deque.  This method differs from {@link #peek peek} only in that
     * it throws an exception if this deque is empty.
     *
     * <p>This method is equivalent to {@link #getFirst() getFirst}.
     *
     * @return the head of the queue represented by this deque
     * @throws NoSuchElementException if this deque is empty
     */
    @Override
    public E element() {
        return getFirst();
    }
    @Override
    public E peek() {
        return peekFirst();
    }
    /**
     * Returns the number of additional elements that this deque can ideally
     * (in the absence of memory or resource constraints) accept without
     * blocking. This is always equal to the initial capacity of this deque
     * less the current {@code size} of this deque.
     *
     * <p>Note that you <em>cannot</em> always tell if an attempt to insert
     * an element will succeed by inspecting {@code remainingCapacity}
     * because it may be the case that another thread is about to
     * insert or remove an element.
     */
    @Override
    public int remainingCapacity() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            return capacity - count;
        } finally {
            lock.unlock();
        }
    }
    /**
     * @throws UnsupportedOperationException {@inheritDoc}
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     * @throws IllegalArgumentException      {@inheritDoc}
     */
    @Override
    public int drainTo(Collection<? super E> c) {
        return drainTo(c, Integer.MAX_VALUE);
    }
    /**
     * @throws UnsupportedOperationException {@inheritDoc}
     * @throws ClassCastException            {@inheritDoc}
     * @throws NullPointerException          {@inheritDoc}
     * @throws IllegalArgumentException      {@inheritDoc}
     */
    @Override
    public int drainTo(Collection<? super E> c, int maxElements) {
        if (c == null) {
            throw new NullPointerException();
        }
        if (c == this) {
            throw new IllegalArgumentException();
        }
        if (maxElements <= 0) {
            return 0;
        }
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            int n = Math.min(maxElements, count);
            for (int i = 0; i < n; i++) {
                c.add(first.item);   // In this order, in case add() throws.
                unlinkFirst();
            }
            return n;
        } finally {
            lock.unlock();
        }
    }
    // Stack methods
    /**
     * @throws IllegalStateException if this deque is full
     * @throws NullPointerException  {@inheritDoc}
     */
    @Override
    public void push(E e) {
        addFirst(e);
    }
    /**
     * @throws NoSuchElementException {@inheritDoc}
     */
    @Override
    public E pop() {
        return removeFirst();
    }
    // Collection methods
    /**
     * Removes the first occurrence of the specified element from this deque.
     * If the deque does not contain the element, it is unchanged.
     * More formally, removes the first element {@code e} such that
     * {@code o.equals(e)} (if such an element exists).
     * Returns {@code true} if this deque contained the specified element
     * (or equivalently, if this deque changed as a result of the call).
     *
     * <p>This method is equivalent to
     * {@link #removeFirstOccurrence(Object) removeFirstOccurrence}.
     *
     * @param o element to be removed from this deque, if present
     * @return {@code true} if this deque changed as a result of the call
     */
    @Override
    public boolean remove(Object o) {
        return removeFirstOccurrence(o);
    }
    /**
     * Returns the number of elements in this deque.
     *
     * @return the number of elements in this deque
     */
    @Override
    public int size() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            return count;
        } finally {
            lock.unlock();
        }
    }
    /**
     * Returns {@code true} if this deque contains the specified element.
     * More formally, returns {@code true} if and only if this deque contains
     * at least one element {@code e} such that {@code o.equals(e)}.
     *
     * @param o object to be checked for containment in this deque
     * @return {@code true} if this deque contains the specified element
     */
    @Override
    public boolean contains(Object o) {
        if (o == null) {
            return false;
        }
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            for (Node<E> p = first; p != null; p = p.next) {
                if (o.equals(p.item)) {
                    return true;
                }
            }
            return false;
        } finally {
            lock.unlock();
        }
    }
    /*
     * TODO: Add support for more efficient bulk operations.
     *
     * We don't want to acquire the lock for every iteration, but we
     * also want other threads a chance to interact with the
     * collection, especially when count is close to capacity.
     */
//     /**
//      * Adds all of the elements in the specified collection to this
//      * queue.  Attempts to addAll of a queue to itself result in
//      * {@code IllegalArgumentException}. Further, the behavior of
//      * this operation is undefined if the specified collection is
//      * modified while the operation is in progress.
//      *
//      * @param c collection containing elements to be added to this queue
//      * @return {@code true} if this queue changed as a result of the call
//      * @throws ClassCastException            {@inheritDoc}
//      * @throws NullPointerException          {@inheritDoc}
//      * @throws IllegalArgumentException      {@inheritDoc}
//      * @throws IllegalStateException if this deque is full
//      * @see #add(Object)
//      */
//     public boolean addAll(Collection<? extends E> c) {
//         if (c == null)
//             throw new NullPointerException();
//         if (c == this)
//             throw new IllegalArgumentException();
//         final ReentrantLock lock = this.lock;
//         lock.lock();
//         try {
//             boolean modified = false;
//             for (E e : c)
//                 if (linkLast(e))
//                     modified = true;
//             return modified;
//         } finally {
//             lock.unlock();
//         }
//     }
    /**
     * Returns an array containing all of the elements in this deque, in
     * proper sequence (from first to last element).
     *
     * <p>The returned array will be "safe" in that no references to it are
     * maintained by this deque.  (In other words, this method must allocate
     * a new array).  The caller is thus free to modify the returned array.
     *
     * <p>This method acts as bridge between array-based and collection-based
     * APIs.
     *
     * @return an array containing all of the elements in this deque
     */
    @Override
    @SuppressWarnings("unchecked")
    public Object[] toArray() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            Object[] a = new Object[count];
            int k = 0;
            for (Node<E> p = first; p != null; p = p.next) {
                a[k++] = p.item;
            }
            return a;
        } finally {
            lock.unlock();
        }
    }
    /**
     * Returns an array containing all of the elements in this deque, in
     * proper sequence; the runtime type of the returned array is that of
     * the specified array.  If the deque fits in the specified array, it
     * is returned therein.  Otherwise, a new array is allocated with the
     * runtime type of the specified array and the size of this deque.
     *
     * <p>If this deque fits in the specified array with room to spare
     * (i.e., the array has more elements than this deque), the element in
     * the array immediately following the end of the deque is set to
     * {@code null}.
     *
     * <p>Like the {@link #toArray()} method, this method acts as bridge between
     * array-based and collection-based APIs.  Further, this method allows
     * precise control over the runtime type of the output array, and may,
     * under certain circumstances, be used to save allocation costs.
     *
     * <p>Suppose {@code x} is a deque known to contain only strings.
     * The following code can be used to dump the deque into a newly
     * allocated array of {@code String}:
     *
     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
     * <p>
     * Note that {@code toArray(new Object[0])} is identical in function to
     * {@code toArray()}.
     *
     * @param a the array into which the elements of the deque are to
     *          be stored, if it is big enough; otherwise, a new array of the
     *          same runtime type is allocated for this purpose
     * @return an array containing all of the elements in this deque
     * @throws ArrayStoreException  if the runtime type of the specified array
     *                              is not a supertype of the runtime type of every element in
     *                              this deque
     * @throws NullPointerException if the specified array is null
     */
    @Override
    @SuppressWarnings("unchecked")
    public <T> T[] toArray(T[] a) {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            if (a.length < count) {
                a = (T[]) java.lang.reflect.Array.newInstance
                        (a.getClass().getComponentType(), count);
            }
            int k = 0;
            for (Node<E> p = first; p != null; p = p.next) {
                a[k++] = (T) p.item;
            }
            if (a.length > k) {
                a[k] = null;
            }
            return a;
        } finally {
            lock.unlock();
        }
    }
    @Override
    public String toString() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            Node<E> p = first;
            if (p == null) {
                return "[]";
            }
            StringBuilder sb = new StringBuilder();
            sb.append('[');
            for (; ; ) {
                E e = p.item;
                sb.append(e == this ? "(this Collection)" : e);
                p = p.next;
                if (p == null) {
                    return sb.append(']').toString();
                }
                sb.append(',').append(' ');
            }
        } finally {
            lock.unlock();
        }
    }
    /**
     * Atomically removes all of the elements from this deque.
     * The deque will be empty after this call returns.
     */
    @Override
    public void clear() {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            for (Node<E> f = first; f != null; ) {
                f.item = null;
                Node<E> n = f.next;
                f.prev = null;
                f.next = null;
                f = n;
            }
            first = last = null;
            count = 0;
            notFull.signalAll();
        } finally {
            lock.unlock();
        }
    }
    /**
     * Returns an iterator over the elements in this deque in proper sequence.
     * The elements will be returned in order from first (head) to last (tail).
     *
     * <p>The returned iterator is
     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
     *
     * @return an iterator over the elements in this deque in proper sequence
     */
    @Override
    public Iterator<E> iterator() {
        return new Itr();
    }
    /**
     * Returns an iterator over the elements in this deque in reverse
     * sequential order.  The elements will be returned in order from
     * last (tail) to first (head).
     *
     * <p>The returned iterator is
     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
     *
     * @return an iterator over the elements in this deque in reverse order
     */
    @Override
    public Iterator<E> descendingIterator() {
        return new DescendingItr();
    }
    /**
     * Base class for Iterators for ResizableCapacityLinkedBlockIngQueue
     */
    private abstract class AbstractItr implements Iterator<E> {
        /**
         * The next node to return in next()
         */
        Node<E> next;
        /**
         * nextItem holds on to item fields because once we claim that
         * an element exists in hasNext(), we must return item read
         * under lock (in advance()) even if it was in the process of
         * being removed when hasNext() was called.
         */
        E nextItem;
        /**
         * Node returned by most recent call to next. Needed by remove.
         * Reset to null if this element is deleted by a call to remove.
         */
        private Node<E> lastRet;
        abstract Node<E> firstNode();
        abstract Node<E> nextNode(Node<E> n);
        AbstractItr() {
            // set to initial position
            final ReentrantLock lock = ResizableCapacityLinkedBlockingQueue.this.lock;
            lock.lock();
            try {
                next = firstNode();
                nextItem = (next == null) ? null : next.item;
            } finally {
                lock.unlock();
            }
        }
        /**
         * Returns the successor node of the given non-null, but
         * possibly previously deleted, node.
         */
        private Node<E> succ(Node<E> n) {
            // Chains of deleted nodes ending in null or self-links
            // are possible if multiple interior nodes are removed.
            for (; ; ) {
                Node<E> s = nextNode(n);
                if (s == null) {
                    return null;
                } else if (s.item != null) {
                    return s;
                } else if (s == n) {
                    return firstNode();
                } else {
                    n = s;
                }
            }
        }
        /**
         * Advances next.
         */
        void advance() {
            final ReentrantLock lock = ResizableCapacityLinkedBlockingQueue.this.lock;
            lock.lock();
            try {
                // assert next != null;
                next = succ(next);
                nextItem = (next == null) ? null : next.item;
            } finally {
                lock.unlock();
            }
        }
        @Override
        public boolean hasNext() {
            return next != null;
        }
        @Override
        public E next() {
            if (next == null) {
                throw new NoSuchElementException();
            }
            lastRet = next;
            E x = nextItem;
            advance();
            return x;
        }
        @Override
        public void remove() {
            Node<E> n = lastRet;
            if (n == null) {
                throw new IllegalStateException();
            }
            lastRet = null;
            final ReentrantLock lock = ResizableCapacityLinkedBlockingQueue.this.lock;
            lock.lock();
            try {
                if (n.item != null) {
                    unlink(n);
                }
            } finally {
                lock.unlock();
            }
        }
    }
    /**
     * Forward iterator
     */
    private class Itr extends AbstractItr {
        @Override
        Node<E> firstNode() {
            return first;
        }
        @Override
        Node<E> nextNode(Node<E> n) {
            return n.next;
        }
    }
    /**
     * Descending iterator
     */
    private class DescendingItr extends AbstractItr {
        @Override
        Node<E> firstNode() {
            return last;
        }
        @Override
        Node<E> nextNode(Node<E> n) {
            return n.prev;
        }
    }
    /**
     * A customized variant of Spliterators.IteratorSpliterator
     */
    static final class LBDSpliterator<E> implements Spliterator<E> {
        static final int MAX_BATCH = 1 << 25;  // max batch array size;
        final ResizableCapacityLinkedBlockingQueue<E> queue;
        Node<E> current;    // current node; null until initialized
        int batch;          // batch size for splits
        boolean exhausted;  // true when no more nodes
        long est;           // size estimate
        LBDSpliterator(ResizableCapacityLinkedBlockingQueue<E> queue) {
            this.queue = queue;
            this.est = queue.size();
        }
        @Override
        public long estimateSize() {
            return est;
        }
        @Override
        public Spliterator<E> trySplit() {
            Node<E> h;
            final ResizableCapacityLinkedBlockingQueue<E> q = this.queue;
            int b = batch;
            int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
            if (!exhausted &&
                    ((h = current) != null || (h = q.first) != null) &&
                    h.next != null) {
                Object[] a = new Object[n];
                final ReentrantLock lock = q.lock;
                int i = 0;
                Node<E> p = current;
                lock.lock();
                try {
                    if (p != null || (p = q.first) != null) {
                        do {
                            if ((a[i] = p.item) != null) {
                                ++i;
                            }
                        } while ((p = p.next) != null && i < n);
                    }
                } finally {
                    lock.unlock();
                }
                if ((current = p) == null) {
                    est = 0L;
                    exhausted = true;
                } else if ((est -= i) < 0L) {
                    est = 0L;
                }
                if (i > 0) {
                    batch = i;
                    return Spliterators.spliterator
                            (a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL |
                                    Spliterator.CONCURRENT);
                }
            }
            return null;
        }
        @Override
        public void forEachRemaining(Consumer<? super E> action) {
            if (action == null) {
                throw new NullPointerException();
            }
            final ResizableCapacityLinkedBlockingQueue<E> q = this.queue;
            final ReentrantLock lock = q.lock;
            if (!exhausted) {
                exhausted = true;
                Node<E> p = current;
                do {
                    E e = null;
                    lock.lock();
                    try {
                        if (p == null) {
                            p = q.first;
                        }
                        while (p != null) {
                            e = p.item;
                            p = p.next;
                            if (e != null) {
                                break;
                            }
                        }
                    } finally {
                        lock.unlock();
                    }
                    if (e != null) {
                        action.accept(e);
                    }
                } while (p != null);
            }
        }
        @Override
        public boolean tryAdvance(Consumer<? super E> action) {
            if (action == null) {
                throw new NullPointerException();
            }
            final ResizableCapacityLinkedBlockingQueue<E> q = this.queue;
            final ReentrantLock lock = q.lock;
            if (!exhausted) {
                E e = null;
                lock.lock();
                try {
                    if (current == null) {
                        current = q.first;
                    }
                    while (current != null) {
                        e = current.item;
                        current = current.next;
                        if (e != null) {
                            break;
                        }
                    }
                } finally {
                    lock.unlock();
                }
                if (current == null) {
                    exhausted = true;
                }
                if (e != null) {
                    action.accept(e);
                    return true;
                }
            }
            return false;
        }
        @Override
        public int characteristics() {
            return Spliterator.ORDERED | Spliterator.NONNULL |
                    Spliterator.CONCURRENT;
        }
    }
    /**
     * Returns a {@link Spliterator} over the elements in this deque.
     *
     * <p>The returned spliterator is
     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
     *
     * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
     *
     * @return a {@code Spliterator} over the elements in this deque
     * @implNote The {@code Spliterator} implements {@code trySplit} to permit limited
     * parallelism.
     * @since 1.8
     */
    @Override
    public Spliterator<E> spliterator() {
        return new LBDSpliterator<E>(this);
    }
    /**
     * Saves this deque to a stream (that is, serializes it).
     *
     * @param s the stream
     * @throws java.io.IOException if an I/O error occurs
     * @serialData The capacity (int), followed by elements (each an
     * {@code Object}) in the proper order, followed by a null
     */
    private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException {
        final ReentrantLock lock = this.lock;
        lock.lock();
        try {
            // Write out capacity and any hidden stuff
            s.defaultWriteObject();
            // Write out all elements in the proper order.
            for (Node<E> p = first; p != null; p = p.next) {
                s.writeObject(p.item);
            }
            // Use trailing null as sentinel
            s.writeObject(null);
        } finally {
            lock.unlock();
        }
    }
    /**
     * Reconstitutes this deque from a stream (that is, deserializes it).
     *
     * @param s the stream
     * @throws ClassNotFoundException if the class of a serialized object
     *                                could not be found
     * @throws java.io.IOException    if an I/O error occurs
     */
    private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
        s.defaultReadObject();
        count = 0;
        first = null;
        last = null;
        // Read in all elements and place in queue
        for (; ; ) {
            @SuppressWarnings("unchecked")
            E item = (E) s.readObject();
            if (item == null) {
                break;
            }
            add(item);
        }
    }
}
  1. 自定义线程池,增加每个线程处理的耗时,以及平均耗时、最大耗时、最小耗时,以及输出监控日志信息等等;
/**
 * 线程池监控类
 *
 * @author wangtongzhou 
 * @since 2022-02-23 07:27
 */
public class ThreadPoolMonitor extends ThreadPoolExecutor {
    private static final Logger LOGGER = LoggerFactory.getLogger(ThreadPoolMonitor.class);
    /**
     * 默认拒绝策略
     */
    private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();
    /**
     * 线程池名称,一般以业务名称命名,方便区分
     */
    private String poolName;
    /**
     * 最短执行时间
     */
    private Long minCostTime;
    /**
     * 最长执行时间
     */
    private Long maxCostTime;
    /**
     * 总的耗时
     */
    private AtomicLong totalCostTime = new AtomicLong();
    private ThreadLocal<Long> startTimeThreadLocal = new ThreadLocal<>();
    /**
     * 调用父类的构造方法,并初始化HashMap和线程池名称
     *
     * @param corePoolSize    线程池核心线程数
     * @param maximumPoolSize 线程池最大线程数
     * @param keepAliveTime   线程的最大空闲时间
     * @param unit            空闲时间的单位
     * @param workQueue       保存被提交任务的队列
     * @param poolName        线程池名称
     */
    public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
                             TimeUnit unit, BlockingQueue<Runnable> workQueue, String poolName) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
                Executors.defaultThreadFactory(), poolName);
    }
    /**
     * 调用父类的构造方法,并初始化HashMap和线程池名称
     *
     * @param corePoolSize    线程池核心线程数
     * @param maximumPoolSize 线程池最大线程数
     * @param keepAliveTime   线程的最大空闲时间
     * @param unit            空闲时间的单位
     * @param workQueue       保存被提交任务的队列
     * @param
     * @param poolName        线程池名称
     */
    public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
                             TimeUnit unit, BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler, String poolName) {
        this(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue,
                Executors.defaultThreadFactory(), handler, poolName);
    }
    /**
     * 调用父类的构造方法,并初始化HashMap和线程池名称
     *
     * @param corePoolSize    线程池核心线程数
     * @param maximumPoolSize 线程池最大线程数
     * @param keepAliveTime   线程的最大空闲时间
     * @param unit            空闲时间的单位
     * @param workQueue       保存被提交任务的队列
     * @param threadFactory   线程工厂
     * @param poolName        线程池名称
     */
    public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
                             TimeUnit unit, BlockingQueue<Runnable> workQueue,
                             ThreadFactory threadFactory, String poolName) {
        super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory, defaultHandler);
        this.poolName = poolName;
    }
    /**
     * 调用父类的构造方法,并初始化HashMap和线程池名称
     *
     * @param corePoolSize    线程池核心线程数
     * @param maximumPoolSize 线程池最大线程数
     * @param keepAliveTime   线程的最大空闲时间
     * @param unit            空闲时间的单位
     * @param workQueue       保存被提交任务的队列
     * @param threadFactory   线程工厂
     * @param handler         拒绝策略
     * @param poolName        线程池名称
     */
    public ThreadPoolMonitor(int corePoolSize, int maximumPoolSize, long keepAliveTime,
                             TimeUnit unit, BlockingQueue<Runnable> workQueue,
                             ThreadFactory threadFactory, RejectedExecutionHandler handler, String poolName) {
        super(corePoolSize, maximumPoolSize, keepAliveTime, unit, workQueue, threadFactory, handler);
        this.poolName = poolName;
    }
    /**
     * 线程池延迟关闭时(等待线程池里的任务都执行完毕),统计线程池情况
     */
    @Override
    public void shutdown() {
        // 统计已执行任务、正在执行任务、未执行任务数量
        LOGGER.info("{} 关闭线程池, 已执行任务: {}, 正在执行任务: {}, 未执行任务数量: {}",
                this.poolName, this.getCompletedTaskCount(), this.getActiveCount(), this.getQueue().size());
        super.shutdown();
    }
    /**
     * 线程池立即关闭时,统计线程池情况
     */
    @Override
    public List<Runnable> shutdownNow() {
        // 统计已执行任务、正在执行任务、未执行任务数量
        LOGGER.info("{} 立即关闭线程池,已执行任务: {}, 正在执行任务: {}, 未执行任务数量: {}",
                this.poolName, this.getCompletedTaskCount(), this.getActiveCount(), this.getQueue().size());
        return super.shutdownNow();
    }
    /**
     * 任务执行之前,记录任务开始时间
     */
    @Override
    protected void beforeExecute(Thread t, Runnable r) {
        startTimeThreadLocal.set(System.currentTimeMillis());
    }
    /**
     * 任务执行之后,计算任务结束时间
     */
    @Override
    protected void afterExecute(Runnable r, Throwable t) {
        long costTime = System.currentTimeMillis() - startTimeThreadLocal.get();
        startTimeThreadLocal.remove();
        maxCostTime = maxCostTime > costTime ? maxCostTime : costTime;
        if (getCompletedTaskCount() == 0) {
            minCostTime = costTime;
        }
        minCostTime = minCostTime < costTime ? minCostTime : costTime;
        totalCostTime.addAndGet(costTime);
        LOGGER.info("{}-pool-monitor: " +
                        "任务耗时: {} ms, 初始线程数: {}, 核心线程数: {}, 执行的任务数量: {}, " +
                        "已完成任务数量: {}, 任务总数: {}, 队列里缓存的任务数量: {}, 池中存在的最大线程数: {}, " +
                        "最大允许的线程数: {},  线程空闲时间: {}, 线程池是否关闭: {}, 线程池是否终止: {}",
                this.poolName,
                costTime, this.getPoolSize(), this.getCorePoolSize(), this.getActiveCount(),
                this.getCompletedTaskCount(), this.getTaskCount(), this.getQueue().size(), this.getLargestPoolSize(),
                this.getMaximumPoolSize(), this.getKeepAliveTime(TimeUnit.MILLISECONDS), this.isShutdown(), this.isTerminated());
    }
    public Long getMinCostTime() {
        return minCostTime;
    }
    public Long getMaxCostTime() {
        return maxCostTime;
    }
    public long getAverageCostTime(){
        if(getCompletedTaskCount()==0||totalCostTime.get()==0){
            return 0;
        }
        return totalCostTime.get()/getCompletedTaskCount();
    }
    /**
     * 生成线程池所用的线程,改写了线程池默认的线程工厂,传入线程池名称,便于问题追踪
     */
    static class MonitorThreadFactory implements ThreadFactory {
        private static final AtomicInteger poolNumber = new AtomicInteger(1);
        private final ThreadGroup group;
        private final AtomicInteger threadNumber = new AtomicInteger(1);
        private final String namePrefix;
        /**
         * 初始化线程工厂
         *
         * @param poolName 线程池名称
         */
        MonitorThreadFactory(String poolName) {
            SecurityManager s = System.getSecurityManager();
            group = Objects.nonNull(s) ? s.getThreadGroup() : Thread.currentThread().getThreadGroup();
            namePrefix = poolName + "-pool-" + poolNumber.getAndIncrement() + "-thread-";
        }
        @Override
        public Thread newThread(Runnable r) {
            Thread t = new Thread(group, r, namePrefix + threadNumber.getAndIncrement(), 0);
            if (t.isDaemon()) {
                t.setDaemon(false);
            }
            if (t.getPriority() != Thread.NORM_PRIORITY) {
                t.setPriority(Thread.NORM_PRIORITY);
            }
            return t;
        }
    }
}
  1. 动态修改线程池的类,通过Spring的监听器监控配置刷新方法,实现动态更新线程池的参数;
/**
 * 动态刷新线程池
 *
 * @author wangtongzhou
 * @since 2022-03-13 14:13
 */
@Component
@Slf4j
public class DynamicThreadPoolManager {
    @Autowired
    private DynamicThreadPoolProperties dynamicThreadPoolProperties;
    /**
     * 存储线程池对象
     */
    public Map<String, ThreadPoolMonitor> threadPoolExecutorMap = new HashMap<>();
    public Map<String, ThreadPoolMonitor> getThreadPoolExecutorMap() {
        return threadPoolExecutorMap;
    }
    /**
     * 初始化线程池
     */
    @PostConstruct
    public void init() {
        createThreadPools(dynamicThreadPoolProperties);
    }
    /**
     * 初始化线程池的创建
     *
     * @param dynamicThreadPoolProperties
     */
    private void createThreadPools(DynamicThreadPoolProperties dynamicThreadPoolProperties) {
        dynamicThreadPoolProperties.getExecutors().forEach(config -> {
            if (!threadPoolExecutorMap.containsKey(config.getThreadPoolName())) {
                ThreadPoolMonitor threadPoolMonitor = new ThreadPoolMonitor(
                        config.getCorePoolSize(),
                        config.getMaxPoolSize(),
                        config.getKeepAliveTime(),
                        config.getUnit(),
                        new ResizableCapacityLinkedBlockingQueue<>(config.getQueueCapacity()),
                        RejectedExecutionHandlerEnum.getRejectedExecutionHandler(config.getRejectedExecutionType()),
                        config.getThreadPoolName()
                );
                threadPoolExecutorMap.put(config.getThreadPoolName(),
                        threadPoolMonitor);
            }
        });
    }
    /**
     * 调整线程池
     *
     * @param dynamicThreadPoolProperties
     */
    private void changeThreadPools(DynamicThreadPoolProperties dynamicThreadPoolProperties) {
        dynamicThreadPoolProperties.getExecutors().forEach(config -> {
            ThreadPoolExecutor threadPoolExecutor = threadPoolExecutorMap.get(config.getThreadPoolName());
            if (Objects.nonNull(threadPoolExecutor)) {
                threadPoolExecutor.setCorePoolSize(config.getCorePoolSize());
                threadPoolExecutor.setMaximumPoolSize(config.getMaxPoolSize());
                threadPoolExecutor.setKeepAliveTime(config.getKeepAliveTime(), config.getUnit());
                threadPoolExecutor.setRejectedExecutionHandler(RejectedExecutionHandlerEnum.getRejectedExecutionHandler(config.getRejectedExecutionType()));
                BlockingQueue<Runnable> queue = threadPoolExecutor.getQueue();
                if (queue instanceof ResizableCapacityLinkedBlockingQueue) {
                    ((ResizableCapacityLinkedBlockingQueue<Runnable>) queue).setCapacity(config.getQueueCapacity());
                }
            }
        });
    }
    @EventListener
    public void envListener(EnvironmentChangeEvent event) {
        log.info("配置发生变更" + event);
        changeThreadPools(dynamicThreadPoolProperties);
    }
}
  1. DynamicThreadPoolPropertiesController对外暴露两个方法,第一个通过ContextRefresher提供对外刷新配置的接口,实现及时更新配置信息,第二提供一个查询接口的方法,
/**
 * 动态修改线程池参数
 *
 * @author wangtongzhou
 * @since 2022-03-13 17:27
 */
@RestController
public class DynamicThreadPoolPropertiesController {
    @Autowired
    private ContextRefresher contextRefresher;
    @Autowired
    private DynamicThreadPoolProperties dynamicThreadPoolProperties;
    @Autowired
    private DynamicThreadPoolManager dynamicThreadPoolManager;
    @PostMapping("/threadPool/properties")
    public void update() {
        ThreadPoolProperties threadPoolProperties =
                dynamicThreadPoolProperties.getExecutors().get(0);
        threadPoolProperties.setCorePoolSize(20);
        threadPoolProperties.setMaxPoolSize(50);
        threadPoolProperties.setQueueCapacity(200);
        threadPoolProperties.setRejectedExecutionType("CallerRunsPolicy");
        contextRefresher.refresh();
    }
    @GetMapping("/threadPool/properties")
    public Map<String, Object> queryThreadPoolProperties() {
        Map<String, Object> metricMap = new HashMap<>();
        List<Map> threadPools = new ArrayList<>();
        dynamicThreadPoolManager.getThreadPoolExecutorMap().forEach((k, v) -> {
            ThreadPoolMonitor threadPoolMonitor = (ThreadPoolMonitor) v;
            Map<String, Object> poolInfo = new HashMap<>();
            poolInfo.put("thread.pool.name", k);
            poolInfo.put("thread.pool.core.size", threadPoolMonitor.getCorePoolSize());
            poolInfo.put("thread.pool.largest.size", threadPoolMonitor.getLargestPoolSize());
            poolInfo.put("thread.pool.max.size", threadPoolMonitor.getMaximumPoolSize());
            poolInfo.put("thread.pool.thread.count", threadPoolMonitor.getPoolSize());
            poolInfo.put("thread.pool.max.costTime", threadPoolMonitor.getMaxCostTime());
            poolInfo.put("thread.pool.average.costTime", threadPoolMonitor.getAverageCostTime());
            poolInfo.put("thread.pool.min.costTime", threadPoolMonitor.getMinCostTime());
            poolInfo.put("thread.pool.active.count", threadPoolMonitor.getActiveCount());
            poolInfo.put("thread.pool.completed.taskCount", threadPoolMonitor.getCompletedTaskCount());
            poolInfo.put("thread.pool.queue.name", threadPoolMonitor.getQueue().getClass().getName());
            poolInfo.put("thread.pool.rejected.name", threadPoolMonitor.getRejectedExecutionHandler().getClass().getName());
            poolInfo.put("thread.pool.task.count", threadPoolMonitor.getTaskCount());
            threadPools.add(poolInfo);
        });
        metricMap.put("threadPools", threadPools);
        return metricMap;
    }
}

整体上的流程到这里就完成了,算是一个Demo版,对于该组件更深入的思考我认为还可以做以下三件事情:

  1. 应该以starter的形式嵌入到应用,通过判断启动类加载的Appllo、Nacos还是默认实现;
  2. 对外可以Push、也可以是日志,还可以支持各种库,提供丰富的输出形式,这个样子的话更加通用化;
  3. 提供统一查询接口、修改接口、增加权限校验、增加预警规则配置;
相关文章
|
2月前
|
并行计算 Java 数据处理
SpringBoot高级并发实践:自定义线程池与@Async异步调用深度解析
SpringBoot高级并发实践:自定义线程池与@Async异步调用深度解析
238 0
|
2天前
|
决策智能 数据库 开发者
使用Qwen2.5+SpringBoot+SpringAI+SpringWebFlux的基于意图识别的多智能体架构方案
本项目旨在解决智能体的“超级入口”问题,通过开发基于意图识别的多智能体框架,实现用户通过单一交互入口使用所有智能体。项目依托阿里开源的Qwen2.5大模型,利用其强大的FunctionCall能力,精准识别用户意图并调用相应智能体。 核心功能包括: - 意图识别:基于Qwen2.5的大模型方法调用能力,准确识别用户意图。 - 业务调用中心:解耦框架与业务逻辑,集中处理业务方法调用,提升系统灵活性。 - 会话管理:支持连续对话,保存用户会话历史,确保上下文连贯性。 - 流式返回:支持打字机效果的流式返回,增强用户体验。 感谢Qwen2.5系列大模型的支持,使项目得以顺利实施。
117 4
使用Qwen2.5+SpringBoot+SpringAI+SpringWebFlux的基于意图识别的多智能体架构方案
|
1月前
|
缓存 Java Spring
实战指南:四种调整 Spring Bean 初始化顺序的方案
本文探讨了如何调整 Spring Boot 中 Bean 的初始化顺序,以满足业务需求。文章通过四种方案进行了详细分析: 1. **方案一 (@Order)**:通过 `@Order` 注解设置 Bean 的初始化顺序,但发现 `@PostConstruct` 会影响顺序。 2. **方案二 (SmartInitializingSingleton)**:在所有单例 Bean 初始化后执行额外的初始化工作,但无法精确控制特定 Bean 的顺序。 3. **方案三 (@DependsOn)**:通过 `@DependsOn` 注解指定 Bean 之间的依赖关系,成功实现顺序控制,但耦合性较高。
实战指南:四种调整 Spring Bean 初始化顺序的方案
|
24天前
|
缓存 NoSQL Java
Spring Boot中的分布式缓存方案
Spring Boot提供了简便的方式来集成和使用分布式缓存。通过Redis和Memcached等缓存方案,可以显著提升应用的性能和扩展性。合理配置和优化缓存策略,可以有效避免常见的缓存问题,保证系统的稳定性和高效运行。
43 3
|
22天前
|
安全 Java 开发者
Spring容器中的bean是线程安全的吗?
Spring容器中的bean默认为单例模式,多线程环境下若操作共享成员变量,易引发线程安全问题。Spring未对单例bean做线程安全处理,需开发者自行解决。通常,Spring bean(如Controller、Service、Dao)无状态变化,故多为线程安全。若涉及线程安全问题,可通过编码或设置bean作用域为prototype解决。
32 1
|
1月前
|
监控 安全 Java
在 Java 中使用线程池监控以及动态调整线程池时需要注意什么?
【10月更文挑战第22天】在进行线程池的监控和动态调整时,要综合考虑多方面的因素,谨慎操作,以确保线程池能够高效、稳定地运行,满足业务的需求。
113 38
|
26天前
|
Prometheus 监控 Java
如何全面监控所有的 Spring Boot 微服务
如何全面监控所有的 Spring Boot 微服务
45 3
|
2月前
|
算法 NoSQL Java
Springboot3新特性:GraalVM Native Image Support和虚拟线程(从入门到精通)
这篇文章介绍了Spring Boot 3中GraalVM Native Image Support的新特性,提供了将Spring Boot Web项目转换为可执行文件的步骤,并探讨了虚拟线程在Spring Boot中的使用,包括如何配置和启动虚拟线程支持。
142 9
Springboot3新特性:GraalVM Native Image Support和虚拟线程(从入门到精通)
|
1月前
|
Prometheus 监控 Cloud Native
JAVA线程池监控以及动态调整线程池
【10月更文挑战第22天】在 Java 中,线程池的监控和动态调整是非常重要的,它可以帮助我们更好地管理系统资源,提高应用的性能和稳定性。
109 4
|
1月前
|
Prometheus 监控 Cloud Native
在 Java 中,如何使用线程池监控以及动态调整线程池?
【10月更文挑战第22天】线程池的监控和动态调整是一项重要的任务,需要我们结合具体的应用场景和需求,选择合适的方法和策略,以确保线程池始终处于最优状态,提高系统的性能和稳定性。
303 2