点击上方"JasonLee实时计算",选择"设为星标"
再也不用担心错过重要文章
后台回复"监控",获取 grafana 监控 Flink 最新的模板
背景
在 Flink on yarn 的模式下,程序运行的日志会分散的存储在不同的 DN 上,当 Flink 任务发生异常的时候,我们需要查看日志来定位问题,一般我们会选择通过 Flink UI 上面的 logs 来查看日志,或者登录到对应的服务器上去查看,但是在任务日志量非常大的情况下,生成的日志文件就非常多,这对于我们排查问题来说,就造成了很大的不便,所以,我们需要有一种统一的日志收集,检索,展示的方案来帮忙我们快速的分析日志,定位问题.
那么我们很容易就能想到 ELK 分布式日志收集解决方案 ELK 是 Elasticsearch、Logstash、Kibana 的简称,通过 Logstash 把日志同步到 Elasticsearch 然后在 Kibana 上图形界面展示 ES 中日志信息,这样就可以检索日志,快速的定位问题.那么第一个问题就来了,我们如何收集分布式日志? 传统的做法是在服务器上部署 flume 或者 filebeat 组件来收集日志,但是在生产环境上,我们可能会有上千台甚至上万台服务器,如果每一台机器都部署 flume 或者 filebeat 组件的话显得笨重且麻烦,而且如果后面增加机器的话,还需要在新增的机器上部署,并且延迟也比较大,这种方案的缺点非常明显,这显然是不能接受的,那有没有更简单,更友好的实时方案来收集这些日志呢? 我们是否可以把日志直接收集到 kafka 呢? 答案是肯定的,现在大多数项目(包括 Flink)都会选择log4j、slg4j 来进行 log 记录,所以可以利用 log4j(log4j2) KafkaAppender 把日志直接打到 kafka 里.这样既简化了繁琐的配置,又降低了延迟.下面就来看看具体的配置.
在 Flink 1.11.0 之前 Flink 使用的日志是 Log4j. 在 1.11.0 之后使用的是 Log4j2. 这两者的配置稍有不同,下面就分别介绍一下.
log4j 配置 (Flink 1.11.0 之前)
log4j.appender.kafka=org.apache.kafka.log4jappender.KafkaLog4jAppender log4j.appender.kafka.brokerList=master:9092,storm1:9092,storm2:9092 log4j.appender.kafka.topic=flink_log_test log4j.appender.kafka.compressionType=none log4j.appender.kafka.requiredNumAcks=0 log4j.appender.kafka.syncSend=true log4j.appender.kafka.layout=org.apache.log4j.PatternLayout # 自定义日志格式 log4j.appender.kafka.layout.ConversionPattern={"log_level":"%p",\ "log_timestamp":"%d{ISO8601}",\ "log_package":"%C",\ "log_thread":"%t",\ "log_file":"%F",\ "log_line":"%L",\ "log_message":"%m",\ "log_path":"%X{log_path}",\ "flink_job_name":"${sys:flink_job_name}"} log4j.appender.kafka.level=INFO # for package com.demo.kafka, log would be sent to kafka appender. log4j.logger.kafka=INFO # 打印源为kafka时指定log默认打印级别 log4j.logger.org.apache.kafka=WARN # 日志的布局格式 #log4j.appender.kafka.layout=net.logstash.log4j.JSONEventLayoutV1 ## 添加自定义参数 k:v 格式,如果有多个 , 隔开 #log4j.appender.kafka.layout.UserFields=flink_job_name:${sys:flink_job_name},yarnContainerId:${sys:yarnContainerId}
为了简化下游的处理,我们需要把日志格式化成 JSON 格式,这里有两种方案,第一种是自己拼接一个 JSON 字符串,第二种是利用官方提供的 net.logstash.log4j.JSONEventLayoutV1 来格式化,如果这两种方案都不能满足你的需求,你可以自己定义 appender 继承 AppenderSkeleton 即可.这里还有另外一个问题,我们如何区分不同任务的日志呢?,如果运行多个 Flink 应用程序的话,多个 container 可能会运行在同一个机器上,那么就没有办法区分日志是哪个任务打的,所以我们这里利用 UserFields 添加了两个自定义的字段用来区分日志 flink_job_name 和 yarnContainerId,这样的话日志就非常清晰了.后面也可以根据 flink_job_name 来检索,所以这里还需要设置一个系统属性 yarnContainerId 让 log4j 可以解析到环境变量里的 yarnContainerId, Flink 默认是没有加这个属性的,所以需要我们自己添加.
flink-conf.yaml 配置
添加下面两行即可,这样就可以拿到 containerId.
env.java.opts.taskmanager: -DyarnContainerId=$CONTAINER_ID env.java.opts.jobmanager: -DyarnContainerId=$CONTAINER_ID log4j2 配置(Flink 1.11.0 之后) # kafka appender config rootLogger.appenderRef.kafka.ref = Kafka appender.kafka.type=Kafka appender.kafka.name=Kafka appender.kafka.syncSend=true appender.kafka.ignoreExceptions=false appender.kafka.topic=flink_log_test appender.kafka.property.type=Property appender.kafka.property.name=bootstrap.servers appender.kafka.property.value=master:9092,storm1:9092,storm2:9092 appender.kafka.layout.type=JSONLayout apender.kafka.layout.value=net.logstash.log4j.JSONEventLayoutV1 appender.kafka.layout.compact=true appender.kafka.layout.complete=false appender.kafka.layout.additionalField1.type=KeyValuePair appender.kafka.layout.additionalField1.key=logdir appender.kafka.layout.additionalField1.value=${sys:log.file} appender.kafka.layout.additionalField2.type=KeyValuePair appender.kafka.layout.additionalField2.key=flink_job_name appender.kafka.layout.additionalField2.value=${sys:flink_job_name} appender.kafka.layout.additionalField3.type=KeyValuePair appender.kafka.layout.additionalField3.key=yarnContainerId appender.kafka.layout.additionalField3.value=${sys:yarnContainerId} # 自定义布局格式 #appender.kafka.layout.type=PatternLayout #appender.kafka.layout.pattern={"log_level":"%p","log_timestamp":"%d{ISO8601}","log_thread":"%t","log_file":"%F", "log_line":"%L","log_message":"'%m'","log_path":"%X{log_path}","job_name":"${sys:flink_job_name}"}%n
log4j2 同样也可以自定义 JSON 字符串或者利用 JSONEventLayoutV1 格式化日志,添加额外字段和 log4j 不太一样,需要通过 appender.kafka.layout.additionalField1 来添加,格式如下:
appender.kafka.layout.additionalField1.type=KeyValuePair appender.kafka.layout.additionalField1.key=logdir appender.kafka.layout.additionalField1.value=${sys:log.file}
这里同样也是添加了 flink_job_name,yarnContainerId 字段,还加了 logdir 字段,这样就可以看到完整的日志路径了.如果还需要更多的信息也可以自己添加.
提交任务
# 第一个任务 flink run -d -m yarn-cluster \ -Dyarn.application.name=test \ -Dyarn.application.queue=flink \ -Dmetrics.reporter.promgateway.groupingKey="jobname=test" \ -Dmetrics.reporter.promgateway.jobName=test \ -c flink.streaming.FlinkStreamingDemo \ -Denv.java.opts="-Dflink_job_name=test" \ /home/jason/bigdata/flink/flink-1.13.2/flink-1.13.0-1.0-SNAPSHOT.jar # 第二个任务 flink run -d -m yarn-cluster \ -Dyarn.application.name=test1 \ -Dyarn.application.queue=spark \ -Dmetrics.reporter.promgateway.groupingKey="jobname=test1" \ -Dmetrics.reporter.promgateway.jobName=test1 \ -c flink.streaming.FlinkStreamingDemo \ -Denv.java.opts="-Dflink_job_name=test1" \ /home/jason/bigdata/flink/flink-1.13.2/flink-1.13.0-1.0-SNAPSHOT.jar
这里需要注意的是,flink_job_name 也需要通过 -Dflink_job_name=test 方式设置一下.然后来消费一下 flink_log_test 这个 topic 看看日志数据如下所示:
{ "thread":"Checkpoint Timer", "level":"INFO", "loggerName":"org.apache.flink.runtime.checkpoint.CheckpointCoordinator", "message":"Triggering checkpoint 7 (type=CHECKPOINT) @ 1629016409942 for job dbb2fb501566711e3ba3a0feca2bcd59.", "endOfBatch":false, "loggerFqcn":"org.apache.logging.slf4j.Log4jLogger", "instant":{ "epochSecond":1629016409, "nanoOfSecond":948000000 }, "threadId":70, "threadPriority":5, "logdir":"/home/jason/bigdata/hadoop/hadoop-2.9.0/logs/userlogs/application_1629044405912_0003/container_1629044405912_0003_01_000001/jobmanager.log", "flink_job_name":"test", "yarnContainerId":"container_1629044405912_0003_01_000001" } { "thread":"jobmanager-future-thread-1", "level":"INFO", "loggerName":"org.apache.flink.runtime.checkpoint.CheckpointCoordinator", "message":"Completed checkpoint 5 for job a1b2a78965da9340168ff964a92729a0 (50960 bytes in 57 ms).", "endOfBatch":false, "loggerFqcn":"org.apache.logging.slf4j.Log4jLogger", "instant":{ "epochSecond":1629016456, "nanoOfSecond":304000000 }, "threadId":52, "threadPriority":5, "logdir":"/home/jason/bigdata/hadoop/hadoop-2.9.0/logs/userlogs/application_1629044405912_0004/container_1629044405912_0004_01_000001/jobmanager.log", "flink_job_name":"test1", "yarnContainerId":"container_1629044405912_0004_01_000001" }
可以看到我们增加的 3 个字段都能正常显示.至此,我们的应用程序日志最终都保存在 Kafka 中.然后就可以接 ELK 这套框架了,今天先写到这里,后面有时间的话,会继续更新后面的部分.