Flink 任务实时监控最佳实践(Prometheus + Grafana)打造企业级监控方案

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
可观测可视化 Grafana 版,10个用户账号 1个月
可观测监控 Prometheus 版,每月50GB免费额度
简介: 我们都知道 Flink 任务是一个 7*24 小时不停运行的任务,所以对于任务的实时监控就显得尤为重要,因为任务运行的状态对于我们来说是一个黑盒,比如任务是否挂掉,是否存在反压,使用的内存,CPU 等情况我们是不知道的,虽然 Flink 的 UI 上面可以添加相关的 metrics 来查看,但是需要手动的一个一个添加,还是比较麻烦的,特别是在任务非常多的情况下.所以就需要有一种统一的监控方案来解决这个问题.Flink 本身提供了非常丰富的 Metric Reporters,比如 JMX InfluxDB Graphite Prometheus 等等,生产环境上用的比较多的是 InfluxDB

我们都知道 Flink 任务是一个 7*24 小时不停运行的任务,所以对于任务的实时监控就显得尤为重要,因为任务运行的状态对于我们来说是一个黑盒,比如任务是否挂掉,是否存在反压,使用的内存,CPU 等情况我们是不知道的,虽然 Flink 的 UI 上面可以添加相关的 metrics 来查看,但是需要手动的一个一个添加,还是比较麻烦的,特别是在任务非常多的情况下.所以就需要有一种统一的监控方案来解决这个问题.Flink 本身提供了非常丰富的 Metric Reporters,比如 JMX InfluxDB Graphite Prometheus 等等,生产环境上用的比较多的是 InfluxDB 和 Prometheus ,我这里选择的是 Prometheus 来上报 Flink 的 metrics 然后通过 Grafana 进行展示.


Grafana 可以说是为监控而生的,是一个颜值非常高的可视化工具.Grafana 支持比较多的数据源格式,比如 InfluxDB 、OpenTSDB Prometheus 等等,并且使用起来非常简单,那 Prometheus 和 Grafana 的结合会擦出怎样的火花呢?下面就一起来看下.


我们先来看一下 Prometheus 和 Grafana 结合的架构图,如下所示:



可以发现里面还需要一个组件 PushGateway ,这是因为 Prometheus 正常是从 Flink 任务拉取数据的,但是我们的 Metric Reporter 是像外部系统推送数据的,所以这两者是存在冲突的,所以就需要有一个中间组件,首先通过 Metric Reporter 把数据推送到 PushGateway ,Prometheus 再从PushGateway 拉取数据,最后展示在 Grafana 上.


下载

下载我这里就省略了,自己到官网下载就行,因为我的机器上之前已经安装过这些组件了,为了演示,所以这次直接下载的最新版本. prometheus-2.28.1 pushgateway-1.4.1 grafana-8.0.6.


安装配置

Prometheus 配置


tar -zxvf prometheus-2.28.1.linux-amd64.tar.gz
mv prometheus-2.28.1.linux-amd64 prometheus-2.28.1
cd prometheus-2.28.1
vi prometheus.yml


主要添加 PushGateway 和 PushGateway 的监控配置,这里还修改了 prometheus 抓取数据的间隔,可以不用改.


# my global config
global:
  scrape_interval:     15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
  evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
  # scrape_timeout is set to the global default (10s).
# Alertmanager configuration
alerting:
  alertmanagers:
  - static_configs:
    - targets:
      # - alertmanager:9093
# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
  # - "first_rules.yml"
  # - "second_rules.yml"
# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
  - job_name: 'prometheus'
    static_configs:
      - targets: ['storm1:9090']
        labels:
          instance: 'prometheus'
  - job_name: 'pushgateway'
    static_configs:
      - targets: ['storm1:9091']
        labels:
          instance: 'pushgateway'


启动


nohup ./prometheus --config.file=prometheus.yml --storage.tsdb.retention=1d &
nohup ./pushgateway &


然后访问一下 prometheus 的 http://storm1:9090/targets 页面,如下图所示如果 state 显示为 up 就说明配置成功了.



image-20210808163920891


pushgateway 不需要任何配置,直接启动即可,访问 http://storm1:9091/# 可以看到已经收到了 Flink Metric Reporter 推送过来的数据.



image-20210808174025532


Grafana 安装配置


tar -zxvf grafana-8.0.6.linux-amd64.tar.gz
cd grafana-8.0.6
nohup ./grafana-server start &

Grafana 可以不做任何配置直接拉起来就行,然后直接访问 http://storm1:3000/ 页面如下所示:



image-20210808164707918


然后直接添加 prometheus 数据源,配置也非常简单,如下图所示:



image-20210808164838805


只需要添加 prometheus 的地址即可,其他的选项默认就行,然后点击 save & test 按钮,出现 Data source is working 说明数据源添加成功了.然后就可以开始创建 DashBoard 了.


flink-conf.yaml 配置


metrics.reporter.promgateway.class: org.apache.flink.metrics.prometheus.PrometheusPushGatewayReporter
metrics.reporter.promgateway.host: storm1
metrics.reporter.promgateway.port: 9091
metrics.reporter.promgateway.jobName: flink
metrics.reporter.promgateway.randomJobNameSuffix: true
metrics.reporter.promgateway.deleteOnShutdown: true


提交 Flink 任务

flink run -d -yqu flink -m yarn-cluster \
-nm test10 \
-p 4 \
-yD metrics.reporter.promgateway.groupingKey="jobname=test10" \
-yD metrics.reporter.promgateway.jobName=test10 \
-c flink.streaming.FlinkStreamingFlatMapDemoNew \
/home/jason/bigdata/jar/flink-1.13.0-1.0-SNAPSHOT.jar


添加 DashBoard



image-20210808173546499


这个是新版本的页面和之前版本的布局还是有很大的不同,不过配置上和之前的大同小异,先选择数据源为 Prometheus 然后输入想要展示的 metrics 会自动提示出完成的 metrics 名称选择确认后页面上方会显示出监控数据,如上图所示.


在这个 DashBoard 的设置里面添加两个变量,一个是数据源,一个是任务的名称,然后就可以根据 Flink 的任务名来切换到不同的任务.



image-20210808175338177


DashBoard 的配置虽然简单,但是需要配置的指标非常多,还是非常累人的,我就不再一一展示了,配置的方式都是一样的.我这里主要分为下面几大类,大家可以根据自己的需要去配置.



image-20210808175756903


完整的展示如下:



image-20210808175854480


相关实践学习
通过可观测可视化Grafana版进行数据可视化展示与分析
使用可观测可视化Grafana版进行数据可视化展示与分析。
相关文章
|
1月前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第26天】Prometheus与Grafana是智能运维中的强大组合,前者是开源的系统监控和警报工具,后者是数据可视化平台。Prometheus具备时间序列数据库、多维数据模型、PromQL查询语言等特性,而Grafana支持多数据源、丰富的可视化选项和告警功能。两者结合可实现实时监控、灵活告警和高度定制化的仪表板,广泛应用于服务器、应用和数据库的监控。
238 3
|
24天前
|
数据采集 Prometheus 监控
监控堆外第三方监控工具Grafana
监控堆外第三方监控工具Grafana
30 5
|
2月前
|
运维 监控 安全
选择主题1:实时计算Flink版最佳实践测评
本文介绍了使用实时计算Flink版进行用户行为分析的实践,涵盖用户行为趋势、留存分析、用户画像构建及异常检测等方面。与自建Flink集群相比,实时计算Flink版在稳定性、性能、开发运维和安全能力上表现更优,且显著降低了企业的IT支出和运维成本,提升了业务决策效率和系统可靠性,是企业级应用的理想选择。
84 32
|
2月前
|
运维 监控 安全
实时计算 Flink 版最佳实践测评
本文介绍了结合电商平台用户行为数据的实时计算Flink版实践,涵盖用户行为分析、标签画像构建、业务指标监控和数据分析预测等场景。文章还对比了实时计算Flink版与其他引擎及自建Flink集群在稳定性、性能、开发运维和安全能力方面的差异,分析了其成本与收益。最后,文章评估了实时计算Flink版的产品内引导、文档帮助、功能满足情况,并提出了针对不同业务场景的改进建议和与其他产品的联动可能性。
69 2
|
2月前
|
Java Shell Maven
Flink-11 Flink Java 3分钟上手 打包Flink 提交任务至服务器执行 JobSubmit Maven打包Ja配置 maven-shade-plugin
Flink-11 Flink Java 3分钟上手 打包Flink 提交任务至服务器执行 JobSubmit Maven打包Ja配置 maven-shade-plugin
131 4
|
1月前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第27天】在智能运维中,Prometheus和Grafana的组合已成为监控和告警体系的事实标准。Prometheus负责数据收集和存储,支持灵活的查询语言PromQL;Grafana提供数据的可视化展示和告警功能。本文介绍如何配置Prometheus监控目标、Grafana数据源及告警规则,帮助运维团队实时监控系统状态,确保稳定性和可靠性。
200 0
|
3月前
|
SQL 运维 监控
实时计算Flink版最佳实践测评报告
本报告旨在评估阿里云实时计算Flink版在实际应用中的表现,通过一系列的测试和分析来探讨其在稳定性、性能、开发运维及安全性方面的优势。同时,我们将结合具体的业务场景,如用户行为分析、标签画像构建等,来说明其实时数据处理能力,并对比自建Flink集群以及其他实时计算引擎。最后,从成本效益的角度出发,讨论采用全托管服务对企业运营的影响。
75 13
|
2月前
|
消息中间件 运维 分布式计算
实时计算Flink版最佳实践测评
本文介绍了使用阿里云实时计算Flink版进行用户行为分析的实践,详细探讨了其在性能、稳定性和成本方面的优势,以及与自建Flink集群的对比。通过实时计算,能够快速发现用户行为模式,优化产品功能,提升用户体验和市场竞争力。文章还提到了产品的易用性、功能满足度及改进建议,并与其他Flink实时计算产品进行了对比,强调了Flink在实时处理方面的优势。
|
3月前
|
存储 运维 监控
实时计算Flink版最佳实践测评
实时计算Flink版最佳实践测评
108 1
|
2月前
|
资源调度 分布式计算 大数据
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
119 0