《从面试题来看源码》,项目中使用Mybatis缓存吗?为什么项目中不用Mybatis的二级缓存?

简介: 《从面试题来看源码》,项目中使用Mybatis缓存吗?为什么项目中不用Mybatis的二级缓存?

image.png

为什么项目中不用Mybatis的二级缓存?

答:

MyBatis的二级缓存相对于一级缓存来说,实现了SqlSession之间缓存数据的共享,同时粒度更加的细,能够到namespace级别,通过Cache接口实现类不同的组合,对Cache的可控性也更强。

但MyBatis在多表查询时,极大可能会出现脏数据,有设计上的缺陷,安全使用二级缓存的条件比较苛刻。

在分布式环境下,由于默认的MyBatis Cache实现都是基于本地的,分布式环境下必然会出现读取到脏数据,需要使用集中式缓存将MyBatis的Cache接口实现,有一定的开发成本,直接使用Redis,Memcached等分布式缓存可能成本更低,安全性也更高。

源码分析

二级缓存开启后,同一个namespace下的所有操作语句,都影响着同一个Cache,即二级缓存被多个SqlSession共享,是一个全局的变量。

当开启缓存后,数据的查询执行的流程就是 二级缓存 -> 一级缓存 -> 数据库。

二级缓存配置

要正确的使用二级缓存,需完成如下配置的。

在MyBatis的配置文件中开启二级缓存。

<setting name="cacheEnabled" value="true"/>

在MyBatis的映射XML中配置cache或者 cache-ref 。

cache标签用于声明这个namespace使用二级缓存,并且可以自定义配置。

<cache/>

  • type:cache使用的类型,默认是PerpetualCache,这在一级缓存中提到过。
  • eviction: 定义回收的策略,常见的有FIFO,LRU。
  • flushInterval: 配置一定时间自动刷新缓存,单位是毫秒。
  • size: 最多缓存对象的个数。
  • readOnly: 是否只读,若配置可读写,则需要对应的实体类能够序列化。
  • blocking: 若缓存中找不到对应的key,是否会一直blocking,直到有对应的数据进入缓存。

cache-ref: 代表引用别的命名空间的Cache配置,两个命名空间的操作使用的是同一个Cache。

<cache-ref namespace="mapper.StudentMapper"/>

二级缓存实验

接下来我们通过实验,了解MyBatis二级缓存在使用上的一些特点。

在本实验中,id为1的学生名称初始化为点点。

实验1

测试二级缓存效果,不提交事务,sqlSession1查询完数据后,sqlSession2相同的查询是否会从缓存中获取数据。

@Test
public void testCacheWithoutCommitOrClose() throws Exception {
        SqlSession sqlSession1 = factory.openSession(true); 
        SqlSession sqlSession2 = factory.openSession(true); 
        StudentMapper studentMapper = sqlSession1.getMapper(StudentMapper.class);
        StudentMapper studentMapper2 = sqlSession2.getMapper(StudentMapper.class);
        System.out.println("studentMapper读取数据: " + studentMapper.getStudentById(1));
        System.out.println("studentMapper2读取数据: " + studentMapper2.getStudentById(1));
}

我们可以看到,当sqlsession没有调用commit()方法时,二级缓存并没有起到作用。

实验2

测试二级缓存效果,当提交事务时,sqlSession1查询完数据后,sqlSession2相同的查询是否会从缓存中获取数据。

@Test
public void testCacheWithCommitOrClose() throws Exception {
        SqlSession sqlSession1 = factory.openSession(true); 
        SqlSession sqlSession2 = factory.openSession(true); 
        StudentMapper studentMapper = sqlSession1.getMapper(StudentMapper.class);
        StudentMapper studentMapper2 = sqlSession2.getMapper(StudentMapper.class);
        System.out.println("studentMapper读取数据: " + studentMapper.getStudentById(1));
        sqlSession1.commit();
        System.out.println("studentMapper2读取数据: " + studentMapper2.getStudentById(1));
}

sqlsession2的查询,使用了缓存,缓存的命中率是0.5。

实验3

测试update操作是否会刷新该namespace下的二级缓存。

@Test
public void testCacheWithUpdate() throws Exception {
        SqlSession sqlSession1 = factory.openSession(true); 
        SqlSession sqlSession2 = factory.openSession(true); 
        SqlSession sqlSession3 = factory.openSession(true); 
        StudentMapper studentMapper = sqlSession1.getMapper(StudentMapper.class);
        StudentMapper studentMapper2 = sqlSession2.getMapper(StudentMapper.class);
        StudentMapper studentMapper3 = sqlSession3.getMapper(StudentMapper.class);
        System.out.println("studentMapper读取数据: " + studentMapper.getStudentById(1));
        sqlSession1.commit();
        System.out.println("studentMapper2读取数据: " + studentMapper2.getStudentById(1));
        studentMapper3.updateStudentName("方方",1);
        sqlSession3.commit();
        System.out.println("studentMapper2读取数据: " + studentMapper2.getStudentById(1));
}

在sqlSession3更新数据库,并提交事务后,sqlsession2的StudentMapper namespace下的查询走了数据库,没有走Cache。

实验4

验证MyBatis的二级缓存不适应用于映射文件中存在多表查询的情况。

通常我们会为每个单表创建单独的映射文件,由于MyBatis的二级缓存是基于namespace的,多表查询语句所在的namspace无法感应到其他namespace中的语句对多表查询中涉及的表进行的修改,引发脏数据问题。

@Test
public void testCacheWithDiffererntNamespace() throws Exception {
        SqlSession sqlSession1 = factory.openSession(true); 
        SqlSession sqlSession2 = factory.openSession(true); 
        SqlSession sqlSession3 = factory.openSession(true); 
        StudentMapper studentMapper = sqlSession1.getMapper(StudentMapper.class);
        StudentMapper studentMapper2 = sqlSession2.getMapper(StudentMapper.class);
        ClassMapper classMapper = sqlSession3.getMapper(ClassMapper.class);
        System.out.println("studentMapper读取数据: " + studentMapper.getStudentByIdWithClassInfo(1));
        sqlSession1.close();
        System.out.println("studentMapper2读取数据: " + studentMapper2.getStudentByIdWithClassInfo(1));
        classMapper.updateClassName("特色一班",1);
        sqlSession3.commit();
        System.out.println("studentMapper2读取数据: " + studentMapper2.getStudentByIdWithClassInfo(1));
}

在这个实验中,我们引入了两张新的表,一张class,一张classroom。

class中保存了班级的id和班级名,classroom中保存了班级id和学生id。

我们在StudentMapper中增加了一个查询方法getStudentByIdWithClassInfo,用于查询学生所在的班级,涉及到多表查询。

在ClassMapper中添加了updateClassName,根据班级id更新班级名的操作。

当sqlsession1的studentmapper查询数据后,二级缓存生效。

保存在StudentMapper的namespace下的cache中。

当sqlSession3的classMapper的updateClassName方法对class表进行更新时,updateClassName不属于StudentMapper的namespace,所以StudentMapper下的cache没有感应到变化,没有刷新缓存。

当StudentMapper中同样的查询再次发起时,从缓存中读取了脏数据。

实验5

为了解决实验4的问题呢,可以使用Cache ref,让ClassMapper引用StudenMapper命名空间,这样两个映射文件对应的Sql操作都使用的是同一块缓存了。

不过这样做的后果是,缓存的粒度变粗了,多个Mapper namespace下的所有操作都会对缓存使用造成影响。

源码分析

源码分析从CachingExecutor的query方法展开,源代码走读过程中涉及到的知识点较多,不能一一详细讲解,读者朋友可以自行查询相关资料来学习。

CachingExecutor的query方法,首先会从MappedStatement中获得在配置初始化时赋予的Cache。

Cache cache = ms.getCache();

本质上是装饰器模式的使用,具体的装饰链是

SynchronizedCache -> LoggingCache -> SerializedCache -> LruCache -> PerpetualCache。

以下是具体这些Cache实现类的介绍,他们的组合为Cache赋予了不同的能力。

  • SynchronizedCache: 同步Cache,实现比较简单,直接使用synchronized修饰方法。
  • LoggingCache: 日志功能,装饰类,用于记录缓存的命中率,如果开启了DEBUG模式,则会输出命中率日志。
  • SerializedCache: 序列化功能,将值序列化后存到缓存中。该功能用于缓存返回一份实例的Copy,用于保存线程安全。
  • LruCache: 采用了Lru算法的Cache实现,移除最近最少使用的key/value。
  • PerpetualCache: 作为为最基础的缓存类,底层实现比较简单,直接使用了HashMap。

然后是判断是否需要刷新缓存,代码如下所示:

flushCacheIfRequired(ms);

在默认的设置中SELECT语句不会刷新缓存,insert/update/delte会刷新缓存。进入该方法。代码如下所示:

private void flushCacheIfRequired(MappedStatement ms) {
    Cache cache = ms.getCache();
    if (cache != null && ms.isFlushCacheRequired()) {      
      tcm.clear(cache);
    }
}

MyBatis的CachingExecutor持有了TransactionalCacheManager,即上述代码中的tcm。

TransactionalCacheManager中持有了一个Map,代码如下所示:

private Map<Cache, TransactionalCache> transactionalCaches = new HashMap<Cache, TransactionalCache>();

这个Map保存了Cache和用TransactionalCache包装后的Cache的映射关系。

TransactionalCache实现了Cache接口,CachingExecutor会默认使用他包装初始生成的Cache,作用是如果事务提交,对缓存的操作才会生效,如果事务回滚或者不提交事务,则不对缓存产生影响。

在TransactionalCache的clear,有以下两句。清空了需要在提交时加入缓存的列表,同时设定提交时清空缓存,代码如下所示:

@Override
public void clear() {
    clearOnCommit = true;
    entriesToAddOnCommit.clear();
}

CachingExecutor继续往下走,ensureNoOutParams主要是用来处理存储过程的,暂时不用考虑。

if (ms.isUseCache() && resultHandler == null) {
    ensureNoOutParams(ms, parameterObject, boundSql);

之后会尝试从tcm中获取缓存的列表。

List<E> list = (List<E>) tcm.getObject(cache, key);

在getObject方法中,会把获取值的职责一路传递,最终到PerpetualCache。如果没有查到,会把key加入Miss集合,这个主要是为了统计命中率。

Object object = delegate.getObject(key);
if (object == null) {
    entriesMissedInCache.add(key);
}

CachingExecutor继续往下走,如果查询到数据,则调用tcm.putObject方法,往缓存中放入值。

if (list == null) {
    list = delegate.<E> query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
    tcm.putObject(cache, key, list); // issue #578 and #116
}

tcm的put方法也不是直接操作缓存,只是在把这次的数据和key放入待提交的Map中。

@Override
public void putObject(Object key, Object object) {
    entriesToAddOnCommit.put(key, object);
}

从以上的代码分析中,我们可以明白,如果不调用commit方法的话,由于TranscationalCache的作用,并不会对二级缓存造成直接的影响。因此我们看看Sqlsession的commit方法中做了什么。代码如下所示:

@Override
public void commit(boolean force) {
    try {
      executor.commit(isCommitOrRollbackRequired(force));

因为我们使用了CachingExecutor,首先会进入CachingExecutor实现的commit方法。

@Override
public void commit(boolean required) throws SQLException {
    delegate.commit(required);
    tcm.commit();
}

会把具体commit的职责委托给包装的Executor。主要是看下tcm.commit(),tcm最终又会调用到TrancationalCache。

public void commit() {
    if (clearOnCommit) {
      delegate.clear();
    }
    flushPendingEntries();
    reset();
}

看到这里的clearOnCommit就想起刚才TrancationalCache的clear方法设置的标志位,真正的清理Cache是放到这里来进行的。具体清理的职责委托给了包装的Cache类。之后进入flushPendingEntries方法。代码如下所示:

private void flushPendingEntries() {
    for (Map.Entry<Object, Object> entry : entriesToAddOnCommit.entrySet()) {
      delegate.putObject(entry.getKey(), entry.getValue());
    }
    ................
}

在flushPendingEntries中,将待提交的Map进行循环处理,委托给包装的Cache类,进行putObject的操作。

后续的查询操作会重复执行这套流程。如果是insert|update|delete的话,会统一进入CachingExecutor的update方法,其中调用了这个函数,代码如下所示:

private void flushCacheIfRequired(MappedStatement ms)

在二级缓存执行流程后就会进入一级缓存的执行流程,因此不再赘述。

相关文章
|
3月前
|
存储 缓存 芯片
让星星⭐月亮告诉你,当我们在说CPU一级缓存二级缓存三级缓存的时候,我们到底在说什么?
本文介绍了CPU缓存的基本概念和作用,以及不同级别的缓存(L1、L2、L3)的特点和工作原理。CPU缓存是CPU内部的存储器,用于存储RAM中的数据和指令副本,以提高数据访问速度,减少CPU与RAM之间的速度差异。L1缓存位于处理器内部,速度最快;L2缓存容量更大,但速度稍慢;L3缓存容量最大,由所有CPU内核共享。文章还对比了DRAM和SRAM两种内存类型,解释了它们在计算机系统中的应用。
123 1
|
1天前
|
缓存 NoSQL Java
Mybatis学习:Mybatis缓存配置
MyBatis缓存配置包括一级缓存(事务级)、二级缓存(应用级)和三级缓存(如Redis,跨JVM)。一级缓存自动启用,二级缓存需在`mybatis-config.xml`中开启并配置映射文件或注解。集成Redis缓存时,需添加依赖、配置Redis参数并在映射文件中指定缓存类型。适用于查询为主的场景,减少增删改操作,适合单表操作且表间关联较少的业务。
|
2月前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
2月前
|
SQL 缓存 Java
【详细实用のMyBatis教程】获取参数值和结果的各种情况、自定义映射、动态SQL、多级缓存、逆向工程、分页插件
本文详细介绍了MyBatis的各种常见用法MyBatis多级缓存、逆向工程、分页插件 包括获取参数值和结果的各种情况、自定义映射resultMap、动态SQL
【详细实用のMyBatis教程】获取参数值和结果的各种情况、自定义映射、动态SQL、多级缓存、逆向工程、分页插件
|
2月前
|
SQL 缓存 关系型数据库
美团面试:Mysql 有几级缓存? 每一级缓存,具体是什么?
在40岁老架构师尼恩的读者交流群中,近期有小伙伴因未能系统梳理MySQL缓存机制而在美团面试中失利。为此,尼恩对MySQL的缓存机制进行了系统化梳理,包括一级缓存(InnoDB缓存)和二级缓存(查询缓存)。同时,他还将这些知识点整理进《尼恩Java面试宝典PDF》V175版本,帮助大家提升技术水平,顺利通过面试。更多技术资料请关注公号【技术自由圈】。
美团面试:Mysql 有几级缓存? 每一级缓存,具体是什么?
|
3月前
|
缓存 监控 算法
小米面试题:多级缓存一致性问题怎么解决
【10月更文挑战第23天】在现代分布式系统中,多级缓存架构因其能够显著提高系统性能和响应速度而被广泛应用。
95 3
|
3月前
|
缓存 Java 数据库连接
使用MyBatis缓存的简单案例
MyBatis 是一种流行的持久层框架,支持自定义 SQL 执行、映射及复杂查询。本文介绍了如何在 Spring Boot 项目中集成 MyBatis 并实现一级和二级缓存,以提高查询性能,减少数据库访问。通过具体的电商系统案例,详细讲解了项目搭建、缓存配置、实体类创建、Mapper 编写、Service 层实现及缓存测试等步骤。
|
3月前
|
存储 缓存 NoSQL
阿里面试题:缓存的一些常见的坑,你遇到过哪些,怎么解决的?
阿里面试题:缓存的一些常见的坑,你遇到过哪些,怎么解决的?
|
3月前
|
缓存 NoSQL Ubuntu
大数据-39 Redis 高并发分布式缓存 Ubuntu源码编译安装 云服务器 启动并测试 redis-server redis-cli
大数据-39 Redis 高并发分布式缓存 Ubuntu源码编译安装 云服务器 启动并测试 redis-server redis-cli
67 3
|
2月前
|
存储 缓存 算法
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!
本文介绍了多线程环境下的几个关键概念,包括时间片、超线程、上下文切换及其影响因素,以及线程调度的两种方式——抢占式调度和协同式调度。文章还讨论了减少上下文切换次数以提高多线程程序效率的方法,如无锁并发编程、使用CAS算法等,并提出了合理的线程数量配置策略,以平衡CPU利用率和线程切换开销。
面试官:单核 CPU 支持 Java 多线程吗?为什么?被问懵了!