上线十年,吴恩达机器学习课程全面升级,Python教学+更多应用,本月开课

简介: 上线十年,吴恩达机器学习课程全面升级,Python教学+更多应用,本月开课

图片.png

大数据文摘作品

作者:Mickey


今年,吴恩达的深度学习课程就上线整整十周年了。

 

十年来,这门课程成为了无数AI人的入门课程,全球有超过60万人注册过这门课,这也让吴恩达成为了“全民AI老师”。

 

图片.png

 

这门深度系列的课程面向希望入行深度学习的从业者,要求学生有一定的数学基础以及统计学知识储备,虽然课程有趣简单好上手,但随着时间推进,这门课程并不能满足所有人的需求。

 

特别是在课程语言的设计上,由于课程设计编写时日已久,大部分的内容使用的仍然是Matlab/Octave语言。十年来,编程世界日新月异,更新更简单的编程工具也层出不穷,例如Python,正成为当前最流行的编程语言。而据已放出的介绍信息,本次课程的最大更新,就是使用 Python 而非 Octave 作为教学语言。

 

同时,吴恩达在十年来也在业界走了一大圈,从应用端获取了不少新的知识,因此,新版的课程也理所当然的加入了这些新的应用内容。

 

虽然具体的开课时间还不确定,但是在本月,我们就能看到崭新的机器学习课程了。

 

话不多说,先放上新课程的注册链接:

https://www.deeplearning.ai/program/machine-learning-specialization/


超过6万注册,经典仍在

去年,斯坦福Daily’s Data Team数据团队精心设计了一个课题,对十年来斯坦福所有与人工智能有关的计算机科学课程进行了分析,想要了解这个行业是如何变化的,以一窥这个行业十年来的发展。

 

其中,吴恩达教授大热的机器学习课程CS229:机器学习是过去10年来最受欢迎的课程,从2010-11年的318名学生增加到2019-20年的869名学生。

 

图片.png

 

增长的驱动因素是学生需求的爆炸性增长。

 

在计算机科学系中存在的多个方向中,选择人工智能方向的是最多的。此外,计算机科学系以外的学生越来越多地在该系学习人工智能课程。

 

不过,就在昨天,随着课程十周年的到来,吴恩达的机器学习课程也告一段落。

 

上周,Stanford Online 和 DeepLearning.AI 团队宣布了一项重要通知:《机器学习》课程将从 2022 年 6 月 14 日起关闭在 Coursera 上的新学员注册。

 

课程《机器学习》将于 2022 年 6 月 14 日停止接受新学员注册,已经注册了的,仍然可以在 Learner Dashboard 上看到并继续学习该课程。

 

一直以来,继承自斯坦福的吴恩达机器学习课程CS229课程一直是这个行业从业者们的默契的“必修课”。在国内,这门课也是饱受好评的课程之一,收获了大批各行各业的学习者。

新课已开放注册:新的编程语言,新的行业经验加持

不过,所谓“旧的不去,新的不来”,新版机器学习课程依然非常值得期待。

从DeepLearning.ai官网上,我们可以看到这门Stanford Online与DeepLearning.AI合办的课程的介绍:仍然专注实用技能,包括机器学习基础和如何使用这些技能解决现实问题。同时也包括一些全新重建,将这门课程扩展到 3 门专业课程,更新后的专业化课程会通过直观的视觉方法教授基础 AI 概念,然后介绍实现算法和基础数学所需的代码。

 

此外,课程开发者也认为,不管是什么阶段的学习者,都能从这门课程中获取一些需要的知识。

 

对于初学者

保留旧版核心课程 - 多年来经过数百万学习者的审查 - 并使其更平易近人;

每节课都以机器学习概念的视觉表示开始,然后是代码,然后是解释基础数学的可选视频。

 

对于注册但没有完成老版机器学习课程的新手

不需要先验数学知识或严格的编码背景;

平衡直觉、代码实践和数学理论,创造简单有效的学习体验。

 

对于已经完成了老版的机器学习课程的“老鸟”

刷新基础 ML 概念的好方法;

已重建评分作业和讲座,以使用 Python 而非 Octave 进行教学;

根据 Andrew Ng 过去十年的行业和研究经验,更新了有关实际应用机器学习的建议部分。

相关文章
|
4天前
|
监控 数据可视化 数据挖掘
Python Rich库使用指南:打造更美观的命令行应用
Rich库是Python的终端美化利器,支持彩色文本、智能表格、动态进度条和语法高亮,大幅提升命令行应用的可视化效果与用户体验。
30 0
|
1月前
|
数据采集 监控 Java
Python 函数式编程的执行效率:实际应用中的权衡
Python 函数式编程的执行效率:实际应用中的权衡
196 102
|
5天前
|
机器学习/深度学习 算法 安全
【强化学习应用(八)】基于Q-learning的无人机物流路径规划研究(Python代码实现)
【强化学习应用(八)】基于Q-learning的无人机物流路径规划研究(Python代码实现)
|
20天前
|
设计模式 缓存 运维
Python装饰器实战场景解析:从原理到应用的10个经典案例
Python装饰器是函数式编程的精华,通过10个实战场景,从日志记录、权限验证到插件系统,全面解析其应用。掌握装饰器,让代码更优雅、灵活,提升开发效率。
83 0
|
24天前
|
数据采集 存储 数据可视化
Python网络爬虫在环境保护中的应用:污染源监测数据抓取与分析
在环保领域,数据是决策基础,但分散在多个平台,获取困难。Python网络爬虫技术灵活高效,可自动化抓取空气质量、水质、污染源等数据,实现多平台整合、实时更新、结构化存储与异常预警。本文详解爬虫实战应用,涵盖技术选型、代码实现、反爬策略与数据分析,助力环保数据高效利用。
94 0
|
1月前
|
存储 程序员 数据处理
Python列表基础操作全解析:从创建到灵活应用
本文深入浅出地讲解了Python列表的各类操作,从创建、增删改查到遍历与性能优化,内容详实且贴近实战,适合初学者快速掌握这一核心数据结构。
157 0
|
1月前
|
中间件 机器人 API
Python多态实战:从基础到高阶的“魔法”应用指南
Python多态机制通过“鸭子类型”实现灵活接口,使不同对象统一调用同一方法,自动执行各自行为。它简化代码逻辑、提升扩展性,适用于数据处理、策略切换、接口适配等场景。掌握多态思维,能有效减少冗余判断,使程序更优雅、易维护。
104 0
|
1月前
|
存储 监控 安全
Python剪贴板监控实战:clipboard-monitor库的深度解析与扩展应用
本文介绍了基于Python的剪贴板监控技术,结合clipboard-monitor库实现高效、安全的数据追踪。内容涵盖技术选型、核心功能开发、性能优化及实战应用,适用于安全审计、自动化办公等场景,助力提升数据管理效率与安全性。
95 0
|
2月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。
|
2月前
|
机器学习/深度学习 存储 Java
Java 大视界 -- Java 大数据机器学习模型在游戏用户行为分析与游戏平衡优化中的应用(190)
本文探讨了Java大数据与机器学习模型在游戏用户行为分析及游戏平衡优化中的应用。通过数据采集、预处理与聚类分析,开发者可深入洞察玩家行为特征,构建个性化运营策略。同时,利用回归模型优化游戏数值与付费机制,提升游戏公平性与用户体验。

推荐镜像

更多