Python中日志异步发送到远程服务器

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
简介: 在Python中使用日志最常用的方式就是在控制台和文件中输出日志了,logging模块也很好的提供的相应 的类,使用起来也非常方便,但是有时我们可能会有一些需求,如还需要将日志发送到远端,或者直接写入数 据库,这种需求该如何实现呢?

背景

在Python中使用日志最常用的方式就是在控制台和文件中输出日志了,logging模块也很好的提供的相应 的类,使用起来也非常方便,但是有时我们可能会有一些需求,如还需要将日志发送到远端,或者直接写入数 据库,这种需求该如何实现呢?

StreamHandler和FileHandler

# -*- coding: utf-8 -*-
"""
-------------------------------------------------
 File Name:   loger
 Description :
 Author :    yangyanxing
 date:     2020/9/23
-------------------------------------------------
"""
import logging
import sys
import os
# 初始化logger
logger = logging.getLogger("yyx")
logger.setLevel(logging.DEBUG)
# 设置日志格式
fmt = logging.Formatter('[%(asctime)s] [%(levelname)s] %(message)s', '%Y-%m-%d
%H:%M:%S')
# 添加cmd handler
cmd_handler = logging.StreamHandler(sys.stdout)
cmd_handler.setLevel(logging.DEBUG)
cmd_handler.setFormatter(fmt)
# 添加文件的handler
logpath = os.path.join(os.getcwd(), 'debug.log')
file_handler = logging.FileHandler(logpath)
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(fmt)
# 将cmd和file handler添加到logger中
logger.addHandler(cmd_handler)
logger.addHandler(file_handler)
logger.debug("今天天气不错")

先初始化一个logger, 并且设置它的日志级别是DEBUG,然后添初始化了 cmd_handler和 file_handler,最后将它们添加到logger中, 运行脚本,会在cmd中打印出

[2020-09-23 10:45:56] [DEBUG] 今天天气不错

添加HTTPHandler

# 添加一个httphandler
import logging.handlers
http_handler = logging.handlers.HTTPHandler(r"127.0.0.1:1987", '/api/log/get')
http_handler.setLevel(logging.DEBUG)
http_handler.setFormatter(fmt)
logger.addHandler(http_handler)
logger.debug("今天天气不错")

结果在服务端我们收到了很多信息

{
'name': [b 'yyx'],
'msg': [b
'\xe4\xbb\x8a\xe5\xa4\xa9\xe5\xa4\xa9\xe6\xb0\x94\xe4\xb8\x8d\xe9\x94\x99'],
'args': [b '()'],
'levelname': [b 'DEBUG'],
'levelno': [b '10'],
'pathname': [b 'I:/workplace/yangyanxing/test/loger.py'],
'filename': [b 'loger.py'],
'module': [b 'loger'],
'exc_info': [b 'None'],
'exc_text': [b 'None'],
'stack_info': [b 'None'],
'lineno': [b '41'],
'funcName': [b '<module>'],
'created': [b '1600831054.8881223'],
'msecs': [b '888.1223201751709'],
'relativeCreated': [b '22.99976348876953'],
'thread': [b '14876'],
'threadName': [b 'MainThread'],
'processName': [b 'MainProcess'],
'process': [b '8648'],
'message': [b
'\xe4\xbb\x8a\xe5\xa4\xa9\xe5\xa4\xa9\xe6\xb0\x94\xe4\xb8\x8d\xe9\x94\x99'],
'asctime': [b '2020-09-23 11:17:34']
}

可以说是信息非常之多,但是却并不是我们想要的样子,我们只是想要类似于

[2020-09-23 10:45:56][DEBUG] 今天天气不错

logging.handlers.HTTPHandler 只是简单的将日志所有信息发送给服务端,至于服务端要怎么组织内 容是由服务端来完成. 所以我们可以有两种方法,一种是改服务端代码,根据传过来的日志信息重新组织一 下日志内容, 第二种是我们重新写一个类,让它在发送的时候将重新格式化日志内容发送到服务端。

我们采用第二种方法,因为这种方法比较灵活, 服务端只是用于记录,发送什么内容应该是由客户端来决定。

我们需要重新定义一个类,我们可以参考 logging.handlers.HTTPHandler 这个类,重新写一个httpHandler类

class CustomHandler(logging.Handler):
  def __init__(self, host, uri, method="POST"):
    logging.Handler.__init__(self)
    self.url = "%s/%s" % (host, uri)
    method = method.upper()
    if method not in ["GET", "POST"]:
      raise ValueError("method must be GET or POST")
    self.method = method
  def emit(self, record):
    '''
   重写emit方法,这里主要是为了把初始化时的baseParam添加进来
   :param record:
   :return:
   '''
    msg = self.format(record)
    if self.method == "GET":
      if (self.url.find("?") >= 0):
        sep = '&'
      else:
        sep = '?'
      url = self.url + "%c%s" % (sep, urllib.parse.urlencode({"log":
msg}))
      requests.get(url, timeout=1)
    else:
      headers = {
        "Content-type": "application/x-www-form-urlencoded",
        "Content-length": str(len(msg))
     }
      requests.post(self.url, data={'log': msg}, headers=headers,
timeout=1)

这行代码表示,将会根据日志对象设置的格式返回对应的内容。

{'log': [b'[2020-09-23 11:39:45] [DEBUG]
\xe4\xbb\x8a\xe5\xa4\xa9\xe5\xa4\xa9\xe6\xb0\x94\xe4\xb8\x8d\xe9\x94\x99']}

将bytes类型转一下就得到了

[2020-09-23 11:43:50] [DEBUG] 今天天气不错

异步的发送远程日志

async def post(self):
  print(self.getParam('log'))
  await asyncio.sleep(5)
  self.write({"msg": 'ok'})

此时我们再打印上面的日志

logger.debug("今天天气不错")
logger.debug("是风和日丽的")

得到的输出为

[2020-09-23 11:47:33] [DEBUG] 今天天气不错
[2020-09-23 11:47:38] [DEBUG] 是风和日丽的

那么现在问题来了,原本只是一个记录日志,现在却成了拖累整个脚本的累赘,所以我们需要异步的来 处理远程写日志。

1

使用多线程处理

def emit(self, record):
  msg = self.format(record)
  if self.method == "GET":
    if (self.url.find("?") >= 0):
      sep = '&'
    else:
      sep = '?'
    url = self.url + "%c%s" % (sep, urllib.parse.urlencode({"log": msg}))
    t = threading.Thread(target=requests.get, args=(url,))
    t.start()
  else:
    headers = {
      "Content-type": "application/x-www-form-urlencoded",
      "Content-length": str(len(msg))
   }
    t = threading.Thread(target=requests.post, args=(self.url,), kwargs=
{"data":{'log': msg},

2

使用线程池处理

python 的 concurrent.futures 中有ThreadPoolExecutor, ProcessPoolExecutor类,是线程池和进程池, 就是在初始化的时候先定义几个线程,之后让这些线程来处理相应的函数,这样不用每次都需要新创建线程

exector = ThreadPoolExecutor(max_workers=1) # 初始化一个线程池,只有一个线程
exector.submit(fn, args, kwargs) # 将函数submit到线程池中
exector = ThreadPoolExecutor(max_workers=1)
def emit(self, record):
  msg = self.format(record)
  timeout = aiohttp.ClientTimeout(total=6)
  if self.method == "GET":
    if (self.url.find("?") >= 0):
      sep = '&'
    else:
      sep = '?'
    url = self.url + "%c%s" % (sep, urllib.parse.urlencode({"log": msg}))
    exector.submit(requests.get, url, timeout=6)
  else:
    headers = {
      "Content-type": "application/x-www-form-urlencoded",
      "Content-length": str(len(msg))
   }
    exector.submit(requests.post, self.url, data={'log': msg},
headers=headers, timeout=6)

3

使用异步aiohttp库来发送请求

class CustomHandler(logging.Handler):
  def __init__(self, host, uri, method="POST"):
    logging.Handler.__init__(self)
    self.url = "%s/%s" % (host, uri)
    method = method.upper()
    if method not in ["GET", "POST"]:
      raise ValueError("method must be GET or POST")
    self.method = method
  async def emit(self, record):
    msg = self.format(record)
    timeout = aiohttp.ClientTimeout(total=6)
    if self.method == "GET":
      if (self.url.find("?") >= 0):
        sep = '&'
      else:
        sep = '?'
      url = self.url + "%c%s" % (sep, urllib.parse.urlencode({"log":
msg}))
      async with aiohttp.ClientSession(timeout=timeout) as session:
      async with session.get(self.url) as resp:
          print(await resp.text())
      else:
        headers = {
        "Content-type": "application/x-www-form-urlencoded",
        "Content-length": str(len(msg))
     }
      async with aiohttp.ClientSession(timeout=timeout, headers=headers)
as session:
      async with session.post(self.url, data={'log': msg}) as resp:
          print(await resp.text())

这时代码执行崩溃了

C:\Python37\lib\logging\__init__.py:894: RuntimeWarning: coroutine
'CustomHandler.emit' was never awaited
self.emit(record)
RuntimeWarning: Enable tracemalloc to get the object allocation traceback

究其原因是由于emit方法中使用 async with session.post 函数,它需要在一个使用async 修饰的函数 里执行,所以修改emit函数,使用async来修饰,这里emit函数变成了异步的函数, 返回的是一个 coroutine 对象,要想执行coroutine对象,需要使用await, 但是脚本里却没有在哪里调用 await emit() ,所以崩溃信息 中显示 coroutine 'CustomHandler.emit' was never awaited。

async def main():
  await logger.debug("今天天气不错")
  await logger.debug("是风和日丽的")
loop = asyncio.get_event_loop()
loop.run_until_complete(main())

执行依然报错

raise TypeError('An asyncio.Future, a coroutine or an awaitable is '

这似乎就没有办法了,想要使用异步库来发送,但是却没有可以调用await的地方。

import asyncio
async def test(n):
 while n > 0:
   await asyncio.sleep(1)
   print("test {}".format(n))
   n -= 1
 return n

async def test2(n):
 while n >0:
   await asyncio.sleep(1)
   print("test2 {}".format(n))
   n -= 1
def stoploop(task):
 print("执行结束, task n is {}".format(task.result()))
 loop.stop()
loop = asyncio.get_event_loop()
task = loop.create_task(test(5))
task2 = loop.create_task(test2(3))
task.add_done_callback(stoploop)
task2 = loop.create_task(test2(3))
loop.run_forever()

注意看上面的代码,我们并没有在某处使用await来执行协程,而是通过将协程注册到某个事件循环对象上, 然后调用该循环的 run_forever() 函数,从而使该循环上的协程对象得以正常的执行。

test 5
test2 3
test 4
test2 2
test 3
test2 1
test 2
test 1
执行结束, task n is 0

可以看到,使用事件循环对象创建的task,在该循环执行run_forever() 以后就可以执行了如果不执行 loop.run_forever() 函数,则注册在它上面的协程也不会执行

loop = asyncio.get_event_loop()
task = loop.create_task(test(5))
task.add_done_callback(stoploop)
task2 = loop.create_task(test2(3))
time.sleep(5)
# loop.run_forever()
loop = asyncio.get_event_loop()
class CustomHandler(logging.Handler):
  def __init__(self, host, uri, method="POST"):
    logging.Handler.__init__(self)
    self.url = "%s/%s" % (host, uri)
    method = method.upper()
    if method not in ["GET", "POST"]:
      raise ValueError("method must be GET or POST")
    self.method = method
  # 使用aiohttp封装发送数据函数
  async def submit(self, data):
    timeout = aiohttp.ClientTimeout(total=6)
    if self.method == "GET":
      if self.url.find("?") >= 0:
        sep = '&'
      else:
        sep = '?'
      url = self.url + "%c%s" % (sep, urllib.parse.urlencode({"log":
data}))
      async with aiohttp.ClientSession(timeout=timeout) as session:
        async with session.get(url) as resp:
          print(await resp.text())
    else:
      headers = {
        "Content-type": "application/x-www-form-urlencoded",
     }
      async with aiohttp.ClientSession(timeout=timeout, headers=headers)
as session:
        async with session.post(self.url, data={'log': data}) as resp:
          print(await resp.text())
    return True
  def emit(self, record):
    msg = self.format(record)
    loop.create_task(self.submit(msg))
# 添加一个httphandler
http_handler = CustomHandler(r"http://127.0.0.1:1987", 'api/log/get')
http_handler.setLevel(logging.DEBUG)
http_handler.setFormatter(fmt)
logger.addHandler(http_handler)
logger.debug("今天天气不错")
logger.debug("是风和日丽的")
loop.run_forever()

loop.create_task(self.submit(msg)) 也可以使用

asyncio.ensure_future(self.submit(msg), loop=loop) 来代替,目的都是将协程对象注册到事件循环中。

但这种方式有一点要注意,loop.run_forever() 将会一直阻塞,所以需要有个地方调用 loop.stop() 方法. 可以注册到某个task的回调中。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
相关文章
|
1月前
|
Python
Socket学习笔记(二):python通过socket实现客户端到服务器端的图片传输
使用Python的socket库实现客户端到服务器端的图片传输,包括客户端和服务器端的代码实现,以及传输结果的展示。
139 3
Socket学习笔记(二):python通过socket实现客户端到服务器端的图片传输
|
1月前
|
JSON 数据格式 Python
Socket学习笔记(一):python通过socket实现客户端到服务器端的文件传输
本文介绍了如何使用Python的socket模块实现客户端到服务器端的文件传输,包括客户端发送文件信息和内容,服务器端接收并保存文件的完整过程。
150 1
Socket学习笔记(一):python通过socket实现客户端到服务器端的文件传输
|
23天前
|
缓存 监控 Linux
Python 实时获取Linux服务器信息
Python 实时获取Linux服务器信息
|
26天前
|
关系型数据库 MySQL 数据处理
探索Python中的异步编程:从asyncio到异步数据库操作
在这个快节奏的技术世界里,效率和性能是关键。本文将带你深入Python的异步编程世界,从基础的asyncio库开始,逐步探索到异步数据库操作的高级应用。我们将一起揭开异步编程的神秘面纱,探索它如何帮助我们提升应用程序的性能和响应速度。
|
29天前
|
Python
python读写操作excel日志
主要是读写操作,创建表格
59 2
|
28天前
|
Python Windows
python知识点100篇系列(24)- 简单强大的日志记录器loguru
【10月更文挑战第11天】Loguru 是一个功能强大的日志记录库,支持日志滚动、压缩、定时删除、高亮和告警等功能。安装简单,使用方便,可通过 `pip install loguru` 快速安装。支持将日志输出到终端或文件,并提供丰富的配置选项,如按时间或大小滚动日志、压缩日志文件等。还支持与邮件通知模块结合,实现邮件告警功能。
python知识点100篇系列(24)- 简单强大的日志记录器loguru
|
1月前
|
调度 Python
深入理解 Python 中的异步操作 | python小知识
在现代编程中,异步操作是一个非常重要的概念,尤其是在处理 I/O 密集型任务时。使用异步操作可以显著提高程序的性能和响应速度。Python 提供了 `async` 和 `await` 关键字,使得编写异步代码变得更加直观和简洁【10月更文挑战第8天】
28 2
|
1月前
|
网络协议 Unix Linux
一个.NET开源、快速、低延迟的异步套接字服务器和客户端库
一个.NET开源、快速、低延迟的异步套接字服务器和客户端库
|
1月前
|
IDE 网络安全 开发工具
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
本文介绍了如何在PyCharm专业版中连接远程服务器并配置远程Python环境解释器,以便在服务器上运行代码。
319 0
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
|
21天前
|
NoSQL 关系型数据库 MySQL
python协程+异步总结!
本文介绍了Python中的协程、asyncio模块以及异步编程的相关知识。首先解释了协程的概念和实现方法,包括greenlet、yield关键字、asyncio装饰器和async/await关键字。接着详细讲解了协程的意义和应用场景,如提高IO密集型任务的性能。文章还介绍了事件循环、Task对象、Future对象等核心概念,并提供了多个实战案例,包括异步Redis、MySQL操作、FastAPI框架和异步爬虫。最后提到了uvloop作为asyncio的高性能替代方案。通过这些内容,读者可以全面了解和掌握Python中的异步编程技术。
39 0
下一篇
无影云桌面