Python实现GIF动图以及视频卡通化,两脚踢碎次元壁 | 机器学习(2)

简介: Python实现GIF动图以及视频卡通化,两脚踢碎次元壁 | 机器学习

视频卡通化

实现代码如下:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2021/12/5 0:26
# @Author  : 剑客阿良_ALiang
# @Site    : 
# @File    : video_cartoon_tool.py
# !/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time    : 2021/12/4 22:34
# @Author  : 剑客阿良_ALiang
# @Site    :
# @File    : image_cartoon_tool.py
from PIL import Image, ImageEnhance
import torch
from torchvision.transforms.functional import to_tensor, to_pil_image
from torch import nn
import os
import torch.nn.functional as F
import uuid
import cv2
import numpy as np
import time
from ffmpy import FFmpeg
# -------------------------- hy add 01 --------------------------
class ConvNormLReLU(nn.Sequential):
    def __init__(self, in_ch, out_ch, kernel_size=3, stride=1, padding=1, pad_mode="reflect", groups=1, bias=False):
        pad_layer = {
            "zero": nn.ZeroPad2d,
            "same": nn.ReplicationPad2d,
            "reflect": nn.ReflectionPad2d,
        }
        if pad_mode not in pad_layer:
            raise NotImplementedError
        super(ConvNormLReLU, self).__init__(
            pad_layer[pad_mode](padding),
            nn.Conv2d(in_ch, out_ch, kernel_size=kernel_size, stride=stride, padding=0, groups=groups, bias=bias),
            nn.GroupNorm(num_groups=1, num_channels=out_ch, affine=True),
            nn.LeakyReLU(0.2, inplace=True)
        )
class InvertedResBlock(nn.Module):
    def __init__(self, in_ch, out_ch, expansion_ratio=2):
        super(InvertedResBlock, self).__init__()
        self.use_res_connect = in_ch == out_ch
        bottleneck = int(round(in_ch * expansion_ratio))
        layers = []
        if expansion_ratio != 1:
            layers.append(ConvNormLReLU(in_ch, bottleneck, kernel_size=1, padding=0))
        # dw
        layers.append(ConvNormLReLU(bottleneck, bottleneck, groups=bottleneck, bias=True))
        # pw
        layers.append(nn.Conv2d(bottleneck, out_ch, kernel_size=1, padding=0, bias=False))
        layers.append(nn.GroupNorm(num_groups=1, num_channels=out_ch, affine=True))
        self.layers = nn.Sequential(*layers)
    def forward(self, input):
        out = self.layers(input)
        if self.use_res_connect:
            out = input + out
        return out
class Generator(nn.Module):
    def __init__(self, ):
        super().__init__()
        self.block_a = nn.Sequential(
            ConvNormLReLU(3, 32, kernel_size=7, padding=3),
            ConvNormLReLU(32, 64, stride=2, padding=(0, 1, 0, 1)),
            ConvNormLReLU(64, 64)
        )
        self.block_b = nn.Sequential(
            ConvNormLReLU(64, 128, stride=2, padding=(0, 1, 0, 1)),
            ConvNormLReLU(128, 128)
        )
        self.block_c = nn.Sequential(
            ConvNormLReLU(128, 128),
            InvertedResBlock(128, 256, 2),
            InvertedResBlock(256, 256, 2),
            InvertedResBlock(256, 256, 2),
            InvertedResBlock(256, 256, 2),
            ConvNormLReLU(256, 128),
        )
        self.block_d = nn.Sequential(
            ConvNormLReLU(128, 128),
            ConvNormLReLU(128, 128)
        )
        self.block_e = nn.Sequential(
            ConvNormLReLU(128, 64),
            ConvNormLReLU(64, 64),
            ConvNormLReLU(64, 32, kernel_size=7, padding=3)
        )
        self.out_layer = nn.Sequential(
            nn.Conv2d(32, 3, kernel_size=1, stride=1, padding=0, bias=False),
            nn.Tanh()
        )
    def forward(self, input, align_corners=True):
        out = self.block_a(input)
        half_size = out.size()[-2:]
        out = self.block_b(out)
        out = self.block_c(out)
        if align_corners:
            out = F.interpolate(out, half_size, mode="bilinear", align_corners=True)
        else:
            out = F.interpolate(out, scale_factor=2, mode="bilinear", align_corners=False)
        out = self.block_d(out)
        if align_corners:
            out = F.interpolate(out, input.size()[-2:], mode="bilinear", align_corners=True)
        else:
            out = F.interpolate(out, scale_factor=2, mode="bilinear", align_corners=False)
        out = self.block_e(out)
        out = self.out_layer(out)
        return out
# -------------------------- hy add 02 --------------------------
def handle(video_path: str, output_dir: str, type: int, fps: int, device='cpu'):
    _ext = os.path.basename(video_path).strip().split('.')[-1]
    if type == 1:
        _checkpoint = './weights/paprika.pt'
    elif type == 2:
        _checkpoint = './weights/face_paint_512_v1.pt'
    elif type == 3:
        _checkpoint = './weights/face_paint_512_v2.pt'
    elif type == 4:
        _checkpoint = './weights/celeba_distill.pt'
    else:
        raise Exception('type not support')
    os.makedirs(output_dir, exist_ok=True)
    # 获取视频音频
    _audio = extract(video_path, output_dir, 'wav')
    net = Generator()
    net.load_state_dict(torch.load(_checkpoint, map_location="cpu"))
    net.to(device).eval()
    result = os.path.join(output_dir, '{}.{}'.format(uuid.uuid1().hex, _ext))
    capture = cv2.VideoCapture(video_path)
    size = (int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)), int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)))
    print(size)
    videoWriter = cv2.VideoWriter(result, cv2.VideoWriter_fourcc(*'mp4v'), fps, size)
    cul = 0
    with torch.no_grad():
        while True:
            ret, frame = capture.read()
            if ret:
                print(ret)
                image = to_tensor(frame).unsqueeze(0) * 2 - 1
                out = net(image.to(device), False).cpu()
                out = out.squeeze(0).clip(-1, 1) * 0.5 + 0.5
                out = to_pil_image(out)
                contrast_enhancer = ImageEnhance.Contrast(out)
                img_enhanced_image = contrast_enhancer.enhance(2)
                enhanced_image = np.asarray(img_enhanced_image)
                videoWriter.write(enhanced_image)
                cul += 1
                print('第{}张图'.format(cul))
            else:
                break
    videoWriter.release()
    # 视频添加原音频
    _final_video = video_add_audio(result, _audio, output_dir)
    return _final_video
# -------------------------- hy add 03 --------------------------
def extract(video_path: str, tmp_dir: str, ext: str):
    file_name = '.'.join(os.path.basename(video_path).split('.')[0:-1])
    print('文件名:{},提取音频'.format(file_name))
    if ext == 'mp3':
        return _run_ffmpeg(video_path, os.path.join(tmp_dir, '{}.{}'.format(uuid.uuid1().hex, ext)), 'mp3')
    if ext == 'wav':
        return _run_ffmpeg(video_path, os.path.join(tmp_dir, '{}.{}'.format(uuid.uuid1().hex, ext)), 'wav')
def _run_ffmpeg(video_path: str, audio_path: str, format: str):
    ff = FFmpeg(inputs={video_path: None},
                outputs={audio_path: '-f {} -vn'.format(format)})
    print(ff.cmd)
    ff.run()
    return audio_path
# 视频添加音频
def video_add_audio(video_path: str, audio_path: str, output_dir: str):
    _ext_video = os.path.basename(video_path).strip().split('.')[-1]
    _ext_audio = os.path.basename(audio_path).strip().split('.')[-1]
    if _ext_audio not in ['mp3', 'wav']:
        raise Exception('audio format not support')
    _codec = 'copy'
    if _ext_audio == 'wav':
        _codec = 'aac'
    result = os.path.join(
        output_dir, '{}.{}'.format(
            uuid.uuid4(), _ext_video))
    ff = FFmpeg(
        inputs={video_path: None, audio_path: None},
        outputs={result: '-map 0:v -map 1:a -c:v copy -c:a {} -shortest'.format(_codec)})
    print(ff.cmd)
    ff.run()
    return result
if __name__ == '__main__':
    print(handle('samples/video/981.mp4', 'samples/video_result/', 3, 25, 'cuda'))

代码说明


1、主要的实现方法入参分别为:视频地址、输出目录、类型、fps(帧率)、设备类型(默认cpu,可选择cuda显卡模式)。


2、类型主要是选择模型,最好用3,人像处理更生动一些。


3、代码设计思路:先将视频音频提取出来、将视频逐帧处理后写入新视频、新视频和原视频音频融合。


关于如何视频提取音频可以参考我的另一篇文章:python 提取视频中的音频 | Python工具类_阿良的博客-CSDN博客


关于如何视频融合音频可以参考我的另一篇文章:


Python 视频添加音频(附代码) | Python工具_阿良的博客-CSDN博客


4、视频中间会产生临时文件,没有清理,如需要可以修改代码自行清理。


验证一下


下面是我准备的视频素材截图,我会上传到github上。


image.png


执行结果

image.png



看看效果截图


image.png

还是很不错的哦。


总结

这次可不是没什么好总结的,总结的东西蛮多的。首先我说一下这个开源项目目前模型的一些问题。


1、我测试了不少图片,总的来说对亚洲人的脸型不能很好的卡通化,但是欧美的脸型都比较好。所以还是训练的数据不是很够,但是能理解,毕竟要专门做卡通化的标注数据想想就是蛮头疼的事。所以我建议大家在使用的时候,多关注一下项目是否更新了最新的模型。


2、视频一但有字幕,会对字幕也做处理。所以可以考虑找一些视频和字幕分开的素材,效果会更好一些。


总的来说,这个项目还是很不错的,两天的学习也让我收获很多。


分享:


       你跳不出这个世界,是因为你不知道这个世界有多大,一旦你知道了,你就超出了它。


                                                                                                               ——《悟空传》


如果本文对你有用的话,请点个赞吧,谢谢!


相关文章
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
97 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
47 2
|
1月前
|
机器学习/深度学习 数据可视化 数据处理
掌握Python数据科学基础——从数据处理到机器学习
掌握Python数据科学基础——从数据处理到机器学习
44 0
|
1月前
|
机器学习/深度学习 数据采集 人工智能
机器学习入门:Python与scikit-learn实战
机器学习入门:Python与scikit-learn实战
54 0
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
Python在数据科学中的应用:从数据处理到模型训练
Python在数据科学中的应用:从数据处理到模型训练
|
23天前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
22天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
10天前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
101 80
|
28天前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
138 59