本文目录
一、Elasticsearch 基本术语
1.1 文档(Document)、索引(Index)、类型(Type)文档三要素
1.2 集群(Cluster)、节点(Node)、分片(Shard)分布式三要素
二、Elasticsearch 工作原理
2.1 文档存储的路由
2.2 如何健康检查
2.3 如何水平扩容
三、小结
1.1 文档(Document)、索引(Index)、类型(Type)文档三要素
文档(Document)
文档,在面向对象观念就是一个对象。在 ES 里面,是一个大 JSON 对象,是指定了唯一 ID 的最底层或者根对象。文档的位置由 _index、_type 和 _id 唯一标识。
索引(Index)
索引,用于区分文档成组,即分到一组的文档集合。索引,用于存储文档和使文档可被搜索。比如项目存索引 project 里面,交易存索引 sales 等。
类型(Type)
类型,用于区分索引中的文档,即在索引中对数据逻辑分区。比如索引 project 的项目数据,根据项目类型 ui 项目、插画项目等进行区分。
和关系型数据库 MySQL 做个类比 :
Document 类似于 Record
Type 类似于 Table
Index 类似于 Database
1.2 集群(Cluster)、节点(Node)、分片(Shard)分布式三要素
集群(Cluster)
服务器集群大家都知道,这里 ES 也是类似的。多个 ElasticSearch 运行实例(节点)组合的组合体是 ElasticSearch 集群。
ElasticSearch 是天然的分布式,通过水平扩容为集群添加更多节点。
集群是去中心化的,有一个主节点(Master)。主节点是动态选举,因此不会出现单点故障。
那分片和节点的配置呢?
节点(Node )
一个 ElasticSearch 运行实例就是节点。顺着集群来,任何节点都可以被选举成为主节点。主节点负责集群内所以变更,比如索引的增加、删除等。所以集群不会因为主节点流量的增大成为瓶颈。因为任何节点都会成为主节点。
下面有 3 个节点,第 1 个节点有:2 个主分片和 1 个副分片。如图:
那么,只有一个节点的 ElasticSearch 服务会存在瓶颈。如图:
分片(Shard)
分片,是 ES 节点中最小的工作单元。分片仅仅保存全部数据的一部分,分片的集合是 ES 的索引。分片包括主分片和副分片,主分片是副分片的拷贝。主分片和副分片地工作基本没有大的区别。
在索引中全文搜索,然后会查询到每个分片,将每个分配的结果进行全局地收集处理,并返回。
二、Elasticsearch 工作原理
2.1 文档存储的路由
当索引到一个文档(如:报价系统),具体的文档数据(如:报价数据)会存储到一个分片。具体文档数据会被切分,并分别存储在分片 1 或者 分片 2 …
那么如何确定存在哪个分片呢?
存储路由过程由下面地公式决定:
routing 是可变值,支持自定义,默认文档 _id。
hash 函数生成数字,经过取余算法得到余数,那么这个余数就是分片的位置。
这是不是有点负载均衡的类似。
2.2 如何健康检查
集群名,集群的健康状态
status 字段是需要我们关心的。状态可能是下列三个值之一:
active_primary_shards 集群中的主分片数量
active_shards 所有分片的汇总值
relocating_shards 显示当前正在从一个节点迁往其他节点的分片的数量。通常来说应该是 0,不过在 Elasticsearch 发现集群不太均衡时,该值会上涨。比如说:添加了一个新节点,或者下线了一个节点。
initializing_shards 刚刚创建的分片的个数。
unassigned_shards 已经在集群状态中存在的分片。
2.3 如何水平扩容
主分片在索引创建已经确定。读操作可以同时被主分片和副分片处理。因此,更多的分片,会拥有更高的吞吐量。自然,需要增加更多的硬件资源支持吞吐量。
说明,这里无法提高性能,因为每个分片获得的资源会变少。
动态调整副本分片数,按需伸缩集群,比如把副本数默认值为 1 增加到 2:
三、小结
简单初探了下 ElasticSearch 的相关内容。后面会主要落地到实战,关于 spring-data-elasticsearch 这块的实战。
最后,《 深入浅出 spring-data-elasticsearch 》小连载目录如下:
深入浅出 spring-data-elasticsearch - ElasticSearch 架构初探(一)
深入浅出 spring-data-elasticsearch - 概述(二)
深入浅出 spring-data-elasticsearch - 基本案例详解(三)
深入浅出 spring-data-elasticsearch - 复杂案例详解(四)
深入浅出 spring-data-elasticsearch - 架构原理以及源码浅析(五)
资料:
官方《Elasticsearch: 权威指南》
https://www.elastic.co/guide/c ... .html
一、Elasticsearch 基本术语
1.1 文档(Document)、索引(Index)、类型(Type)文档三要素
1.2 集群(Cluster)、节点(Node)、分片(Shard)分布式三要素
二、Elasticsearch 工作原理
2.1 文档存储的路由
2.2 如何健康检查
2.3 如何水平扩容
三、小结
推荐:Spring For All 社区 http://spring4all.com
1.1 文档(Document)、索引(Index)、类型(Type)文档三要素
文档(Document)
文档,在面向对象观念就是一个对象。在 ES 里面,是一个大 JSON 对象,是指定了唯一 ID 的最底层或者根对象。文档的位置由 _index、_type 和 _id 唯一标识。
索引(Index)
索引,用于区分文档成组,即分到一组的文档集合。索引,用于存储文档和使文档可被搜索。比如项目存索引 project 里面,交易存索引 sales 等。
类型(Type)
类型,用于区分索引中的文档,即在索引中对数据逻辑分区。比如索引 project 的项目数据,根据项目类型 ui 项目、插画项目等进行区分。
和关系型数据库 MySQL 做个类比 :
Document 类似于 Record
Type 类似于 Table
Index 类似于 Database
1.2 集群(Cluster)、节点(Node)、分片(Shard)分布式三要素
集群(Cluster)
服务器集群大家都知道,这里 ES 也是类似的。多个 ElasticSearch 运行实例(节点)组合的组合体是 ElasticSearch 集群。
ElasticSearch 是天然的分布式,通过水平扩容为集群添加更多节点。
集群是去中心化的,有一个主节点(Master)。主节点是动态选举,因此不会出现单点故障。
那分片和节点的配置呢?
节点(Node )
一个 ElasticSearch 运行实例就是节点。顺着集群来,任何节点都可以被选举成为主节点。主节点负责集群内所以变更,比如索引的增加、删除等。所以集群不会因为主节点流量的增大成为瓶颈。因为任何节点都会成为主节点。
下面有 3 个节点,第 1 个节点有:2 个主分片和 1 个副分片。如图:
那么,只有一个节点的 ElasticSearch 服务会存在瓶颈。如图:
分片(Shard)
分片,是 ES 节点中最小的工作单元。分片仅仅保存全部数据的一部分,分片的集合是 ES 的索引。分片包括主分片和副分片,主分片是副分片的拷贝。主分片和副分片地工作基本没有大的区别。
在索引中全文搜索,然后会查询到每个分片,将每个分配的结果进行全局地收集处理,并返回。
二、Elasticsearch 工作原理
2.1 文档存储的路由
当索引到一个文档(如:报价系统),具体的文档数据(如:报价数据)会存储到一个分片。具体文档数据会被切分,并分别存储在分片 1 或者 分片 2 …
那么如何确定存在哪个分片呢?
存储路由过程由下面地公式决定:
routing 是可变值,支持自定义,默认文档 _id。
hash 函数生成数字,经过取余算法得到余数,那么这个余数就是分片的位置。
这是不是有点负载均衡的类似。
2.2 如何健康检查
集群名,集群的健康状态
status 字段是需要我们关心的。状态可能是下列三个值之一:
active_primary_shards 集群中的主分片数量
active_shards 所有分片的汇总值
relocating_shards 显示当前正在从一个节点迁往其他节点的分片的数量。通常来说应该是 0,不过在 Elasticsearch 发现集群不太均衡时,该值会上涨。比如说:添加了一个新节点,或者下线了一个节点。
initializing_shards 刚刚创建的分片的个数。
unassigned_shards 已经在集群状态中存在的分片。
2.3 如何水平扩容
主分片在索引创建已经确定。读操作可以同时被主分片和副分片处理。因此,更多的分片,会拥有更高的吞吐量。自然,需要增加更多的硬件资源支持吞吐量。
说明,这里无法提高性能,因为每个分片获得的资源会变少。
动态调整副本分片数,按需伸缩集群,比如把副本数默认值为 1 增加到 2:
三、小结
简单初探了下 ElasticSearch 的相关内容。后面会主要落地到实战,关于 spring-data-elasticsearch 这块的实战。
最后,《 深入浅出 spring-data-elasticsearch 》小连载目录如下:
深入浅出 spring-data-elasticsearch - ElasticSearch 架构初探(一)
深入浅出 spring-data-elasticsearch - 概述(二)
深入浅出 spring-data-elasticsearch - 基本案例详解(三)
深入浅出 spring-data-elasticsearch - 复杂案例详解(四)
深入浅出 spring-data-elasticsearch - 架构原理以及源码浅析(五)
资料:
官方《Elasticsearch: 权威指南》
https://www.elastic.co/guide/c ... .html
本文作者: 泥瓦匠
原文链接: http://www.bysocket.com
版权归作者所有,转载请注明出处