python实现RFM建模(三)

简介: python实现RFM建模(三)

③ 第三步

def functions(x):
    if x.iloc[0]==1 and x.iloc[1]==1 and x.iloc[2]==1:
        return "重要价值客户"
    elif x.iloc[0]==1 and x.iloc[1]==1 and x.iloc[2]==0:
        return "潜力客户"
    elif x.iloc[0]==1 and x.iloc[1]==0 and x.iloc[2]==1:
        return "重要深耕客户"
    elif x.iloc[0]==1 and x.iloc[1]==0 and x.iloc[2]==0:
        return "新客户"
    elif x.iloc[0]==0 and x.iloc[1]==1 and x.iloc[2]==1:
        return "重要唤回客户"
    elif x.iloc[0]==0 and x.iloc[1]==1 and x.iloc[2]==0:
        return "一般客户"
    elif x.iloc[0]==0 and x.iloc[1]==0 and x.iloc[2]==1:
        return "重要挽回客户"
    elif x.iloc[0]==0 and x.iloc[1]==0 and x.iloc[2]==0:
        return "流失客户"
df2["标签"] = df2[["R-SCORE是否大于均值","F-SCORE是否大于均值","M-SCORE是否大于均值"]].apply(functions,axis=1)
df2.sample(10)



结果如下:

image.png


4)可视化展示

① 绘制不同类型客户的人数对比

df3 = df2.groupby("标签").agg({"标签":"count"})
df3["不同客户的占比"] = df3["标签"].apply(lambda x:x/np.sum(df3["标签"]))
df3 = df3.sort_values(by="标签",ascending=True)
plt.figure(figsize=(6,4),dpi=100)
x = df3.index
y = df3["标签"]
plt.barh(x,height=0.5,width=y,align="center")
plt.title("不同类型客户的人数对比")
for x,y in enumerate(y):
    plt.text(y+450,x,y,ha="center",va="center",fontsize=14)
plt.xticks(np.arange(0,10001,2000))
plt.tight_layout()
plt.savefig("不同类型客户的人数对比",dpi=300)



结果如下:

image.png


② 绘制不同类型客户人数占比图

df3 = df2.groupby("标签").agg({"标签":"count"})
df3["不同客户的占比"] = df3["标签"].apply(lambda x:x/np.sum(df3["标签"]))
df3 = df3.sort_values(by="标签",ascending=True)
plt.figure(figsize=(7,4),dpi=100)
x = df3["不同客户的占比"]
labels = ['潜力客户', '一般客户', '重要价值客户', '重要唤回客户', '重要深耕客户', '新客户', '重要挽回客户', '流失客户']
colors = ['#9999ff','#ff9999','#7777aa','#2442aa','#dd5555','deeppink','yellowgreen','lightskyblue']
explode = [0,0,0,0,0,0,0,0]
patches,l_text = plt.pie(x,labels=labels,colors=colors,
        explode=explode,startangle=90,counterclock=False)
for t in l_text:
    t.set_size(0)
plt.axis("equal")
plt.legend(loc=(0.001,0.001),frameon=False)
plt.title("不同类型客户人数占比图")
plt.savefig("不同类型客户人数占比图",dpi=300)


结果如下:

image.png

相关文章
|
7月前
|
机器学习/深度学习 数据挖掘 网络架构
Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析
Python对商店数据进行lstm和xgboost销售量时间序列建模预测分析
|
6天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
42 15
|
3月前
|
机器学习/深度学习 算法 数据可视化
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
2024年中国研究生数学建模竞赛C题聚焦磁性元件磁芯损耗建模。题目背景介绍了电能变换技术的发展与应用,强调磁性元件在功率变换器中的重要性。磁芯损耗受多种因素影响,现有模型难以精确预测。题目要求通过数据分析建立高精度磁芯损耗模型。具体任务包括励磁波形分类、修正斯坦麦茨方程、分析影响因素、构建预测模型及优化设计条件。涉及数据预处理、特征提取、机器学习及优化算法等技术。适合电气、材料、计算机等多个专业学生参与。
1698 17
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
|
3月前
|
机器学习/深度学习 数据采集 算法
【BetterBench博士】2024华为杯C题:数据驱动下磁性元件的磁芯损耗建模 Python代码实现
本文介绍了2024年中国研究生数学建模竞赛C题的详细分析,涵盖数据预处理、特征提取、模型训练及评估等多个方面。通过对磁通密度数据的处理,提取关键特征并应用多种分类算法进行波形分类。此外,还探讨了斯坦麦茨方程及其温度修正模型的应用,分析了温度、励磁波形和磁芯材料对磁芯损耗的影响,并提出了优化磁芯损耗与传输磁能的方法。最后,提供了B站视频教程链接,供进一步学习参考。
182 6
【BetterBench博士】2024华为杯C题:数据驱动下磁性元件的磁芯损耗建模 Python代码实现
|
2月前
|
开发者 Python
Python类和子类的小示例:建模农场
Python类和子类的小示例:建模农场
15 0
|
4月前
|
供应链 数据可视化 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
本文详细介绍了第十一届泰迪杯数据挖掘挑战赛B题的解决方案,涵盖了对产品订单数据的深入分析、多种因素对需求量影响的探讨,并建立了数学模型进行未来需求量的预测,同时提供了Python代码实现和结果可视化的方法。
138 3
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题一
|
4月前
|
数据建模 大数据 数据库
【2023年4月美赛加赛】Y题:Understanding Used Sailboat Prices 建模思路、建模方案、数据来源、相关资料、Python代码
本文提供了2023年MCM问题Y的解题思路、建模方案、数据来源、相关资料以及Python代码,旨在建立数学模型解释二手帆船的挂牌价格,并分析地区对价格的影响,以及在香港(SAR)市场上的应用。
48 1
【2023年4月美赛加赛】Y题:Understanding Used Sailboat Prices 建模思路、建模方案、数据来源、相关资料、Python代码
|
4月前
|
机器学习/深度学习 算法 数据可视化
2023年美赛C题Wordle预测问题三、四建模及Python代码详细讲解
本文通过Python代码详细讲解了2023年美赛C题Wordle预测问题三和问题四的建模过程,包括特征工程、层次聚类分析、聚类效果评价以及对Number in hard mode趋势和百分比占比情况的分析。
44 1
2023年美赛C题Wordle预测问题三、四建模及Python代码详细讲解
|
4月前
|
数据采集 机器学习/深度学习 数据可视化
2023年美赛C题Wordle预测问题一建模及Python代码详细讲解
本文通过Python代码详细讲解了2023年美赛C题Wordle预测问题一的建模过程,包括数据预处理、特征工程、相关性分析以及线性回归模型的应用。
64 1
2023年美赛C题Wordle预测问题一建模及Python代码详细讲解
|
4月前
|
机器学习/深度学习 搜索推荐 数据可视化
【2023年第十一届泰迪杯数据挖掘挑战赛】C题:泰迪内推平台招聘与求职双向推荐系统构建 建模及python代码详解 问题二
本文介绍了2023年第十一届泰迪杯数据挖掘挑战赛C题的解决方案,重点讲解了如何构建招聘与求职双向推荐系统的建模过程和Python代码实现,并对招聘信息和求职者信息进行了详细分析和画像构建。
84 1