一窥推荐系统的原理(上)

简介: 一窥推荐系统的原理

一、推荐系统介绍


一句话介绍推荐系统的作用: 高效地达成用户与意向对象的匹配。



1.1 推荐系统的应用


推荐系统是建立在海量数据挖掘基础上,高效地为用户提供个性化的决策支持和信息服务,以提高用户体验及商业效益。常见的推荐应用场景如:


  • 资讯类:今日头条、腾讯公众号等新闻、广告、文章等内容推荐;


  • 电商类:淘宝、京东、拼多多、亚马逊等商品推荐;


  • 娱乐类:抖音、快手、爱奇艺等视频推荐;


  • 生活服务类:美团、大众点评、携程等吃喝玩乐推荐;


  • 社交类:微信、陌陌等好友推荐;


1.2 推荐系统的目标


构建推荐系统前,首先要根据业务目标确定推荐系统的优化目标,对于不同的应用场景,推荐系统(模型学习)关注的是不同的业务指标,比如:


  • 对于电商推荐,不仅要预测用户的点击率(CTR),更重要的是预测用户的转化率(CVR);


  • 对于内容推荐,业务关心的除了CTR,还有阅读/观看时长、点赞、转发、评论等指标;


由于不同的业务指标可能存在一些联系,技术实现上,大多数时候都会设计一个多目标优化的框架(如:CTR和CVR模型进行Cotrain),共同进行模型的训练与预测,各个任务之间能够更好地共享信息。


二、推荐系统的技术架构


2.1 推荐系统的层次组成


推荐系统基于海量的物品数据的挖掘,通常由 召回层→排序层(粗排、精排、重排)组成,不同的层次的组成,其实也就是信息筛选的漏斗,这也是工程上效率的需要,把意向对象的数量从粗犷到精细化的筛选过程(这过程不就像是找工作的时候,HR根据简历985/211粗筛出一部分,再做技能匹配及面试精准筛选,最终敲定合适的人选):



  • 召回层:从物品库中根据多个维度筛选出潜在物品候选集(多路召回),并将候选集传递给排序环节。在召回供给池中,整个召回环节的输出量往往以万为单位。召回层主要作用是在海量的候选做粗筛,由于召回位置靠前且输入空间较大,所以时延要求较高,偏好简单方法,简单快速地确定候选集。常用方法有:召回策略(如推荐热门文章、命中某类标签的文章等等)、双塔模型(学习用户及物品的embedding,内积表示预测意向概率)、FM及CF等模型做召回、知识图谱(知识图谱表示学习,知识推理用户对物品的兴趣程度)、用户(多兴趣)行为序列预测做召回等等。



  • 粗排层:利用规则或者简单模型对召回的物品进行排序,并根据配额进行截断,截取出 Top N 条数据输出给精排层,配额一般分业务场景,整个粗排环节的输出量往往以千为单位。


  • 精排层:利用大量特征的复杂模型,对物品进行更精准的排序,然后输出给重排层,整个精排环节的输出量往往以百为单位。粗排、精排的环节是推荐系统最关键,也是最具有技术含量的部分,使用的方法有深度学习推荐模型(Deep& Cross、NFM等)、强化学习等等。


  • 重排层:主要以产品策略为导向进行重排(及融合),常见策略如去除已曝光、去重、打散、多样性、新鲜度、效益优先等策略,并根据点击回退在列表中插入新的信息来提升体验,最后生成用户可见的推荐列表,整个融合和重排环节的输出量往往以几十为单位。


2.2 冷启动方法


对于完整的推荐系统结构,还需要考虑一个问题是:对于新的用户、新的物品如何有效推荐的问题,也就是**”冷启动“**的问题,因为没有太多数据和特征来学习召回及排序模型,所以往往要用一些冷启动方法替代来达到目的(这个目的不只是提高点击等消费指标,更深层的可能会极大的带动业务增长)。


冷启动一般分为三类,用户冷启动、物品冷启动还有系统冷启动,常用的冷启动方法如:


  • 提供热门及多样性内容推荐。即使用统计的方法将最热门的物品进行推荐,越热门且品类丰富的内容被点击的可能性越大;


  • 利用新用户基本信息关联到相关内容(利用领域、职位、工作年龄、性别和所在地等信息给用户推荐感兴趣或者相关的内容,如年龄-关联电影表、收入-关联商品类型表,性别-文章关联表等等);


  • 利用新物品的内容关联到相似物品,并对应相关用户。


三、推荐系统的相关技术


纵观推荐技术的发展史,简单来说就是特征工程自动化的过程,从人工设计特征+LR,到模型实现自动特征交互:如基于LR的自动特征交互组合的因式分解机FM及FFM 以及 GBDT树特征+LR ,到自动提取高层次特征的深度学习模型(DNN)。



推荐系统整体技术栈可以分为传统机器学习推荐及深度学习推荐,而不同的推荐层偏好不同(复杂度、精确度)的模型或策略(图来源:王喆老师的专栏):



3.1 传统机器学习推荐模型


传统机器学习推荐可以简单划分为协同过滤算法及基于逻辑回归的序列算法:



3.1.1 协同过滤的相关算法


协同过滤算法可以简单划分为基于用户/物品的方法:


  • 基于用户的协同过滤算法(UserCF)


通过分析用户喜欢的物品,我们发现如果两个用户(用户A 和用户 B)喜欢过的物品差不多,则这两个用户相似。此时,我们可以将用户 A 喜欢过但是用户 B 没有看过的物品推荐给用户 B。基于用户的协同过滤算法(UserCF)的具体实现思路如下:


(1)计算用户之间的相似度; (2)根据用户的相似度,找到这个集合中用户未见过但是喜欢的物品(即目标用户兴趣相似的用户有过的行为)进行推荐。



  • 基于物品的协同过滤算法(ItemCF)


通过分析用户喜欢的物品,我们发现如果两个物品被一拨人喜欢,则这两个物品相似。此时,我们就会将用户喜欢相似物品中某个大概率物品推荐给这群用户。基于物品的协同过滤算法的具体实现思路如下:


(1)计算物品之间的相似度; (2)就可以推荐给目标用户没有评价过的相似物品。



  • 矩阵分解法


对于协同过滤算法,它本质上是一个矩阵填充问题,可以直接通过相似度计算(如基于用户的相似、基于物品的相似等)去解决。但有一问题是现实中的共现矩阵中有绝大部分的评分是空白的,由于数据稀疏,因此在计算相似度的时候效果就会大打折扣。这里我们可以借助矩阵分解方法,找到用户和物品的表征向量(K个维度,超参数),通过对用户向量和物品向量的内积则是用户对物品的偏好度(预测评分)。



由于矩阵分解引入了隐因子的概念,模型解释性很弱。另外的,它只简单利用了用户对物品的打分(特征维度单一),很难融入更多的特征(比如用户信息及其他行为的特征,商品属性的特征等等)。而这些缺陷,下文介绍的逻辑回归的相关算法可以很好地弥补。


相关文章
|
机器学习/深度学习 存储 搜索推荐
协同过滤推荐系统:原理、技术与Java实践
前言 在当今信息爆炸的时代,推荐系统已成为解决信息过载问题的有效工具。从电商网站的商品推荐到社交媒体的信息推送,推荐系统已经渗透到了我们生活的方方面面。而协同过滤(Collaborative Filtering,简称CF)算法是推荐系统领域的一种经典技术,通过分析用户之间的相似性或物品之间的相似性,为用户推荐与其兴趣相关的物品。
2103 1
|
JSON 算法 JavaScript
数据挖掘与分析 - 用JS实现推荐系统的原理与开发
数据挖掘与分析 - 用JS实现推荐系统的原理与开发
338 0
数据挖掘与分析 - 用JS实现推荐系统的原理与开发
|
机器学习/深度学习 搜索推荐 算法
|
机器学习/深度学习 算法 搜索推荐
|
机器学习/深度学习 搜索推荐 算法
基于surprise模块快速搭建旅游产品推荐系统(代码+原理)(二 )
基于surprise模块快速搭建旅游产品推荐系统(代码+原理)
368 0
基于surprise模块快速搭建旅游产品推荐系统(代码+原理)(二 )
|
机器学习/深度学习 算法 搜索推荐
基于surprise模块快速搭建旅游产品推荐系统(代码+原理)(一)
基于surprise模块快速搭建旅游产品推荐系统(代码+原理)
576 0
基于surprise模块快速搭建旅游产品推荐系统(代码+原理)(一)
|
新零售 机器学习/深度学习 分布式计算
|
5月前
|
搜索推荐 前端开发 数据可视化
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
本文介绍了一个基于Django框架、协同过滤算法、ECharts数据可视化以及Bootstrap前端技术的酒店推荐系统,该系统通过用户行为分析和推荐算法优化,提供个性化的酒店推荐和直观的数据展示,以提升用户体验。
197 1
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
|
7月前
|
搜索推荐 算法 小程序
基于Java协同过滤算法的电影推荐系统设计和实现(源码+LW+调试文档+讲解等)
基于Java协同过滤算法的电影推荐系统设计和实现(源码+LW+调试文档+讲解等)
|
7月前
|
搜索推荐 算法 小程序
基于Java协同过滤算法的图书推荐系统设计和实现(源码+LW+调试文档+讲解等)
基于Java协同过滤算法的图书推荐系统设计和实现(源码+LW+调试文档+讲解等)

热门文章

最新文章

下一篇
开通oss服务