一文归纳Ai调参炼丹之法

简介: 一文归纳Ai调参炼丹之法

1 超参数优化




调参即超参数优化,是指从超参数空间中选择一组合适的超参数,以权衡好模型的偏差(bias)和方差(variance),从而提高模型效果及性能。常用的调参方法有:


  • 人工手动调参


  • 网格/随机搜索(Grid / Random Search)


  • 贝叶斯优化(Bayesian Optimization)



注:超参数 vs 模型参数差异 超参数是控制模型学习过程的(如网络层数、学习率); 模型参数是通过模型训练学习后得到的(如网络最终学习到的权重值)。

2 人工调参


手动调参需要结合数据情况及算法的理解,优化调参的优先顺序及参数的经验值。


不同模型手动调参思路会有差异,如随机森林是一种bagging集成的方法,参数主要有n_estimators(子树的数量)、max_depth(树的最大生长深度)、max_leaf_nodes(最大叶节点数)等。(此外其他参数不展开说明) 对于n_estimators:通常越大效果越好。参数越大,则参与决策的子树越多,可以消除子树间的随机误差且增加预测的准度,以此降低方差与偏差。 对于max_depth或max_leaf_nodes:通常对效果是先增后减的。取值越大则子树复杂度越高,偏差越低但方差越大。



3 网格/随机搜索



  • 网格搜索(grid search),是超参数优化的传统方法,是对超参数组合的子集进行穷举搜索,找到表现最佳的超参数子集。


  • 随机搜索(random search),是对超参数组合的子集简单地做固定次数的随机搜索,找到表现最佳的超参数子集。对于规模较大的参数空间,采用随机搜索往往效率更高。


import numpy as np
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RandomizedSearchCV
from sklearn.ensemble import RandomForestClassifier
# 选择模型 
model = RandomForestClassifier()
# 参数搜索空间
param_grid = {
    'max_depth': np.arange(1, 20, 1),
    'n_estimators': np.arange(1, 50, 10),
    'max_leaf_nodes': np.arange(2, 100, 10)
}
# 网格搜索模型参数
grid_search = GridSearchCV(model, param_grid, cv=5, scoring='f1_micro')
grid_search.fit(x, y)
print(grid_search.best_params_)
print(grid_search.best_score_)
print(grid_search.best_estimator_)
# 随机搜索模型参数
rd_search = RandomizedSearchCV(model, param_grid, n_iter=200, cv=5, scoring='f1_micro')
rd_search.fit(x, y)
print(rd_search.best_params_)
print(rd_search.best_score_)
print(rd_search.best_estimator_)


4 贝叶斯优化


贝叶斯优化(Bayesian Optimization)与网格/随机搜索最大的不同,在于考虑了历史调参的信息,使得调参更有效率。(高维参数空间下,贝叶斯优化复杂度较高,效果会近似随机搜索。)


4.1 算法简介


贝叶斯优化思想简单可归纳为两部分:



  • 高斯过程(GP):以历史的调参信息(Observation)去学习目标函数的后验分布(Target)的过程。


  • 采集函数(AC): 由学习的目标函数进行采样评估,分为两种过程: 1、开采过程:在最可能出现全局最优解的参数区域进行采样评估。 2、勘探过程:兼顾不确定性大的参数区域的采样评估,避免陷入局部最优。


4.2 算法流程


for循环n次迭代:
    采集函数依据学习的目标函数(或初始化)给出下个开采极值点 Xn+1;
    评估Xn+1得到Yn+1;
    加入新的Xn+1、Yn+1数据样本,并更新高斯过程模型;



"""
随机森林分类Iris使用贝叶斯优化调参
"""
import numpy as np
from hyperopt import hp, tpe, Trials, STATUS_OK, Trials, anneal
from functools import partial
from hyperopt.fmin import fmin
from sklearn.metrics import f1_score
from sklearn.ensemble import RandomForestClassifier
def model_metrics(model, x, y):
    """ 评估指标 """
    yhat = model.predict(x)
    return  f1_score(y, yhat,average='micro')
def bayes_fmin(train_x, test_x, train_y, test_y, eval_iters=50):
    """
    bayes优化超参数
    eval_iters:迭代次数
    """
    def factory(params):
        """
        定义优化的目标函数
        """
        fit_params = {
            'max_depth':int(params['max_depth']),
            'n_estimators':int(params['n_estimators']),
            'max_leaf_nodes': int(params['max_leaf_nodes'])
            }
        # 选择模型
        model = RandomForestClassifier(**fit_params)
        model.fit(train_x, train_y)
        # 最小化测试集(- f1score)为目标
        train_metric = model_metrics(model, train_x, train_y)
        test_metric = model_metrics(model, test_x, test_y)
        loss = - test_metric
        return {"loss": loss, "status":STATUS_OK}
    # 参数空间
    space = {
        'max_depth': hp.quniform('max_depth', 1, 20, 1),
        'n_estimators': hp.quniform('n_estimators', 2, 50, 1), 
        'max_leaf_nodes': hp.quniform('max_leaf_nodes', 2, 100, 1)
            }
    # bayes优化搜索参数
    best_params = fmin(factory, space, algo=partial(anneal.suggest,), max_evals=eval_iters, trials=Trials(),return_argmin=True)
    # 参数转为整型
    best_params["max_depth"] = int(best_params["max_depth"])
    best_params["max_leaf_nodes"] = int(best_params["max_leaf_nodes"])
    best_params["n_estimators"] = int(best_params["n_estimators"])
    return best_params
#  搜索最优参数
best_params = bayes_fmin(train_x, test_x, train_y, test_y, 100)
print(best_params)


相关文章
手把手体验通义灵码2.0:AI程序员如何让我从“调参侠”进阶“架构师”?
通义灵码2.0是一款强大的AI编程工具,帮助开发者从“调参侠”进阶为“架构师”。它通过跨语言开发支持、智能单元测试生成和图生代码等功能,大幅提升开发效率。例如,将Python数据处理函数一键转为React+ECharts组件,自动生成单元测试用例,甚至通过草图生成前端布局代码。此外,新增的QwQ模型具备“代码脑补”能力,可推荐性能优化策略。尽管功能强大,但仍需注意环境隔离与代码审查,避免过度依赖。通义灵码2.0不仅是工具,更是开发者的“外接大脑”。
98 8
ComfyUI-Copilot:阿里把AI助手塞进ComfyUI:一句话生成工作流,自动布线/调参/选模型,小白秒变大神!
ComfyUI-Copilot 是阿里推出的基于 ComfyUI 的 AI 智能助手,支持自然语言交互、智能节点推荐和自动工作流辅助,降低开发门槛并提升效率。
635 6
ComfyUI-Copilot:阿里把AI助手塞进ComfyUI:一句话生成工作流,自动布线/调参/选模型,小白秒变大神!
一文归纳Ai数据增强之法
数据、算法、算力是人工智能发展的三要素。数据决定了Ai模型学习的上限,数据规模越大、质量越高,模型就能够拥有更好的泛化能力。然而在实际工程中,经常有数据量太少(相对模型而言)、样本不均衡、很难覆盖全部的场景等问题,解决这类问题的一个有效途径是通过数据增强(Data Augmentation),使模型学习获得较好的泛化性能。
Serverless MCP 运行时业界首发,函数计算让 AI 应用最后一公里提速
作为云上托管 MCP 服务的最佳运行时,函数计算 FC 为阿里云百炼 MCP 提供弹性调用能力,用户只需提交 npx 命令即可“零改造”将开源 MCP Server 部署到云上,函数计算 FC 会准备好计算资源,并以弹性、可靠的方式运行 MCP 服务,按实际调用时长和次数计费,欢迎你在阿里云百炼和函数计算 FC 上体验 MCP 服务。
171 30
演讲实录:中小企业如何快速构建AI应用?
AI时代飞速发展,大模型和AI的应用创新不断涌现,面对百花齐放的AI模型,阿里云计算平台大数据AI解决方案总监魏博文分享如何通过阿里云提供的大数据AI一体化平台,解决企业开发难、部署繁、成本高等一系列问题,让中小企业快速搭建AI应用。
AI赋能大学计划·大模型技术与应用实战学生训练营——华东师范大学站圆满结营
4月24日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行大模型应用实战学生训练营——华东师范大学站圆满结营。
33 2
破茧成蝶:传统J2EE应用无缝升级AI原生
本文探讨了技术挑战和解决方案,还提供了具体的实施步骤,旨在帮助企业顺利实现从传统应用到智能应用的过渡。
破茧成蝶:传统J2EE应用无缝升级AI原生

热门文章

最新文章