前言
代码都是由 CPU 跑起来的,我们代码写的好与坏就决定了 CPU 的执行效率,特别是在编写计算密集型的程序,更要注重 CPU 的执行效率,否则将会大大影响系统性能。
CPU 内部嵌入了 CPU Cache(高速缓存),它的存储容量很小,但是离 CPU 核心很近,所以缓存的读写速度是极快的,那么如果 CPU 运算时,直接从 CPU Cache 读取数据,而不是从内存的话,运算速度就会很快。
但是,大多数人不知道 CPU Cache 的运行机制,以至于不知道如何才能够写出能够配合 CPU Cache 工作机制的代码,一旦你掌握了它,你写代码的时候,就有新的优化思路了。
那么,接下来我们就来看看,CPU Cache 到底是什么样的,是如何工作的呢,又该写出让 CPU 执行更快的代码呢?
CPU Cache 有多快?
你可能会好奇为什么有了内存,还需要 CPU Cache?根据摩尔定律,CPU 的访问速度每 18 个月就会翻倍,相当于每年增长 60% 左右,内存的速度当然也会不断增长,但是增长的速度远小于 CPU,平均每年只增长 7% 左右。于是,CPU 与内存的访问性能的差距不断拉大。
到现在,一次内存访问所需时间是 200~300
多个时钟周期,这意味着 CPU 和内存的访问速度已经相差 200~300
多倍了。
为了弥补 CPU 与内存两者之间的性能差异,就在 CPU 内部引入了 CPU Cache,也称高速缓存。
CPU Cache 通常分为大小不等的三级缓存,分别是 L1 Cache、L2 Cache 和 L3 Cache。
由于 CPU Cache 所使用的材料是 SRAM,价格比内存使用的 DRAM 高出很多,在当今每生产 1 MB 大小的 CPU Cache 需要 7 美金的成本,而内存只需要 0.015 美金的成本,成本方面相差了 466 倍,所以 CPU Cache 不像内存那样动辄以 GB 计算,它的大小是以 KB 或 MB 来计算的。
在 Linux 系统中,我们可以使用下图的方式来查看各级 CPU Cache 的大小,比如我这手上这台服务器,离 CPU 核心最近的 L1 Cache 是 32KB,其次是 L2 Cache 是 256KB,最大的 L3 Cache 则是 3MB。