Python分析捕食者和被捕食者模型 Lotka--Volterra方程 | 拟合求解a,b,c,d

简介: 捕食者和被捕食者模型(Predator-Prey Model),这是生态学中非常经典的一个模型。

一、问题来源


问题来自帮朋友做的一个题,如下所示:



我主要做了:


  • 可视化捕食者和被捕食者数量随时间变换情况;
  • 利用 numpy 的 polyfit、poly1d 拟合数据点分别得到两个多项式方程;
  • scipy求导并代入值计算;
  • 等式两边的输入都有了,用多元线性回归(fit_intercept=False,不要截距)拟合数据,分别估计方程两个参数;
  • 最终得到拟合的 a,b,c,d 的值;


二、引言


捕食者和被捕食者模型(Predator-Prey Model),这是生态学中非常经典的一个模型。


假设一个生态系统中有两个物种,其中一个为食草动物,两者分别构成了捕食者和被捕食者。以兔子和狐狸为例:


  • x ( t ) x(t)x(t) : 狐狸的数量随时间变换的函数
  • y ( t ) y(t)y(t):兔子的数量随时间变换的函数


如果没有兔子,狐狸的数量会因为缺少食物而减少:


image.pngimage.pngimage.png

image.png


事实上,生态系统中的兔子和狐狸存在一种互动关系,兔子的数量会因为狐狸数量的增加而减少,狐狸的数量也会因为兔子数量的减少而减少,两者之始至终都相互影响。我们用正比于两者数量的积来表示这种互动关系, 所以更精确的模型可以这样写:


image.png


现在考虑兔子的数量,如果没有狐狸,并且假设自然资源、空间充足,那么兔子会呈现指数式增长:


image.png



事实上,兔子的数量会随着狐狸数量的增加而减少,这种减少体现在两种生物的互动过程中。


结合之前的分析,我们可以得到一个综合的微分方程组:


image.png


捕食者和被捕食者模型,这个著名的方程组也叫做 Lotka-Volterra predator-prey model。



三、Python分析


可视化捕食者和被捕食者模型随时间变换情况:



利用 numpy 的 polyfit、poly1d 拟合数据点,分别得到两个多项式方程。




scipy求导并代入值计算,等式两边的输入都有了,用多元线性回归(fit_intercept=False,不要截距)拟合数据,可以分别估计方程两个参数;最终得到拟合的 a,b,c,d 的值。

目录
相关文章
|
18天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
162 73
|
27天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
110 36
|
21天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
75 21
|
23天前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现智能食品消费偏好预测的深度学习模型
使用Python实现智能食品消费偏好预测的深度学习模型
71 23
|
24天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费习惯预测的深度学习模型
使用Python实现智能食品消费习惯预测的深度学习模型
101 19
|
21天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
69 15
|
25天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
102 18
|
25天前
|
机器学习/深度学习 数据采集 搜索推荐
使用Python实现深度学习模型:智能食品消费行为预测
使用Python实现深度学习模型:智能食品消费行为预测
66 8
|
22天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费模式预测的深度学习模型
使用Python实现智能食品消费模式预测的深度学习模型
55 2
|
机器学习/深度学习 Python
Python3入门机器学习 - 模型泛化
模型正则化 在多项式回归中如果degree过大,会造成过拟合的情况,导致模型预测方差极大,因此,我们可以使用模型正则化的方式来减小过拟合导致的预测方差极大的问题 即在我们训练模型时,不仅仅需要将预测的y和训练集的y的均方误差达到最小,还要使参数向量最小。
999 0