测试平台系列(71) Python定时任务方案

简介: Python定时任务方案

大家好~我是米洛


我正在从0到1打造一个开源的接口测试平台, 也在编写一套与之对应的完整教程,希望大家多多支持

定时任务


定时任务,顾名思义: 定时执行的任务,可以是一段bash命令,也可以是一个脚本文件。通常用于我们需要在特定时刻做事情。

举个例子: 每晚8点执行全业务场景接口自动化回归测试,又或者每隔20分钟去你家QQ农场偷菜!

Python的定时任务


如果是大中型公司,一定有对应的平台让大家接入。一般这样的平台的名字或者描述都是: 分布式任务调度平台这样的。再不济还有jenkins满足我们的需求~

想起博主以前"小时候"(刚工作的时候),公司既没有用jenkins,也没有这样的大平台可以接入。我是怎么做定时任务的呢?

来看一段代码:


import time
from datetime import datetime
def func():
    # 这个是定时任务要执行的ui/接口自动化方法
    pass
def main():
    while True:
      # 获取当前时间
      now = datetime.now()
      if now.hour == 20 and now.minute == 0:
          # 当时间到达晚上8点0分,我们就开始跑自动化任务啦
          print("任务开始执行")
          func()
      time.sleep(60)
if __name__ == "__main__":
    main()

不知道现在是否还有人依然用着这样的方式定时执行自动化测试,既然都2021年了,那咱们还是先进点吧。那么定时任务在Python中要怎么做呢?接着看。

几种常见的方案


schedule

如果你只是上面提到简单诉求,那我建议直接使用schedule库。这个库我个人感觉是小学生版本的升级版,对于我那种局限的sleep任务做了一些扩展:

  • 支持了按周期执行任务
  • 执行时间阅读起来更人性化
  • 还支持星期X执行

  1. 安装scheduler


pip install schedule
  1. 官网给出的例子


import schedule
import time
# 定义一个执行方法
def job():
    print("I'm working...")
# 每10分钟执行一次job
schedule.every(10).minutes.do(job)
# 每小时执行一次job
schedule.every().hour.do(job)
# 每天10:30执行job
schedule.every().day.at("10:30").do(job)
# 每个星期一执行一次
schedule.every().monday.do(job)
# 每个星期三的13:15执行一次
schedule.every().wednesday.at("13:15").do(job)
# 在每分钟的17秒执行一次
schedule.every().minute.at(":17").do(job)
while True:
    # 进入schedule循环
    schedule.run_pending()
    time.sleep(1)

可以看出,api十分简单,语义也很清晰。基本可以满足我们的需求了~如果我们只是要定时去做某些事情的话,我想这个库非常human。

Jenkins

这个工具相比大家都有所了解吧~jenkins是一个比较强大的软件了,它可以打通git/svn,也支持定时任务等。有着丰富的插件,比如邮件,是一套完整的CI/CD解决方案。对于任务的执行结果的记录,也是可追溯的。估计唯一的缺点就是,引入了额外的系统。可能本身我只是一个自动化测试框架,现在却要搭建一套jenkins。

如果大家有代码改动->执行定时任务类似的需求,又需要完善的权限控制系统的话,那jenkins会是你的不二选择。

Celery

35.jpg

image

我对这家伙了解的不太多,但python+celery仿佛成了一个固定搭配。不知道我理解的对不对:

celery是一个任务队列,你可以制定好任务执行的规则,放入队列中,会有专门的消费端来帮你执行这些任务。

说到这里就不得不提到持久化了~

话之持久化


什么是持久化呢?通俗的讲,就是瞬时数据(比如内存中的数据,是不能永久保存的)持久化为持久数据(比如持久化至数据库中,能够长久保存)

我们可以把数据放到文件里,也可以放到数据库(实际上也是磁盘里)进行持久性保存。

这样做的目的: 数据可以存储,下次也还能拿到这些数据这里面的内容太多了,打算后面再开一节来讲。

我们在Python里面的变量啊,这些数据都是存放在内存当中的,所以我们刚才的schedule是不支持持久化的。(也可能是我没研究到)

那jenkins支持吗?他是支持的,你想,你建立一个项目,里面有一些job的配置,什么时候执行,执行了干嘛,最后保存。

上述就是一个持久化的过程。

你保存了数据以后,下次能够获取到这个项目的任务信息,也就是说你哪怕重启了jenkins,任务依然存在

说明任务本身作为了一条数据,持久地保存了起来。

ApScheduler

"APScheduler是一个Python库,可让您安排稍后要执行的Python代码,只需一次或定期执行。您可以根据您添加新的作业或删除旧的旧作业。如果您在数据库中存储工作,他们还将存活调度程序重新启动并保持状态。重新启动调度程序时,它将运行它在脱机1时应该运行的所有作业。"

这是摘自ApScheduler官网的介绍,总体来说它支持对任务的增删改查(持久化),也能很好地支撑定时任务的执行。它相对来说比较轻量,不像celery那么复杂,也不像schedule那么简陋。由于我们不打算引入jenkins,所以总体来说,ApScheduler算得上是咱们执行定时任务的不二之选了。

由于篇幅的原因,今天的内容就介绍到这啦~


下一节我们就详细介绍ApScheduler在pity中的运用叭




相关文章
|
4天前
|
安全 关系型数据库 测试技术
学习Python Web开发的安全测试需要具备哪些知识?
学习Python Web开发的安全测试需要具备哪些知识?
18 4
|
1月前
|
Web App开发 前端开发 JavaScript
探索Python科学计算的边界:利用Selenium进行Web应用性能测试与优化
【10月更文挑战第6天】随着互联网技术的发展,Web应用程序已经成为人们日常生活和工作中不可或缺的一部分。这些应用不仅需要提供丰富的功能,还必须具备良好的性能表现以保证用户体验。性能测试是确保Web应用能够快速响应用户请求并处理大量并发访问的关键步骤之一。本文将探讨如何使用Python结合Selenium来进行Web应用的性能测试,并通过实际代码示例展示如何识别瓶颈及优化应用。
113 5
|
1月前
|
机器学习/深度学习 人工智能 监控
提升软件质量的关键路径:高效测试策略与实践在软件开发的宇宙中,每一行代码都如同星辰般璀璨,而将这些星辰编织成星系的过程,则依赖于严谨而高效的测试策略。本文将引领读者探索软件测试的奥秘,揭示如何通过精心设计的测试方案,不仅提升软件的性能与稳定性,还能加速产品上市的步伐,最终实现质量与效率的双重飞跃。
在软件工程的浩瀚星海中,测试不仅是发现缺陷的放大镜,更是保障软件质量的坚固防线。本文旨在探讨一种高效且创新的软件测试策略框架,它融合了传统方法的精髓与现代技术的突破,旨在为软件开发团队提供一套系统化、可执行性强的测试指引。我们将从测试规划的起点出发,沿着测试设计、执行、反馈再到持续优化的轨迹,逐步展开论述。每一步都强调实用性与前瞻性相结合,确保测试活动能够紧跟软件开发的步伐,及时适应变化,有效应对各种挑战。
|
14天前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
55 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
5天前
|
人工智能 供应链 安全
AI辅助安全测试案例某电商-供应链平台平台安全漏洞
【11月更文挑战第13天】该案例介绍了一家电商供应链平台如何利用AI技术进行全面的安全测试,包括网络、应用和数据安全层面,发现了多个潜在漏洞,并采取了有效的修复措施,提升了平台的整体安全性。
|
15天前
|
监控 安全 测试技术
构建高效的精准测试平台:设计与实现指南
在软件开发过程中,精准测试是确保产品质量和性能的关键环节。一个精准的测试平台能够自动化测试流程,提高测试效率,缩短测试周期,并提供准确的测试结果。本文将分享如何设计和实现一个精准测试平台,从需求分析到技术选型,再到具体的实现步骤。
65 1
|
17天前
|
测试技术 持续交付 Apache
Python性能测试新风尚:JMeter遇上Locust,性能分析不再难🧐
Python性能测试新风尚:JMeter遇上Locust,性能分析不再难🧐
43 3
|
16天前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
32 1
|
20天前
|
Web App开发 定位技术 iOS开发
Playwright 是一个强大的工具,用于在各种浏览器上测试应用,并模拟真实设备如手机和平板。通过配置 `playwright.devices`,可以轻松模拟不同设备的用户代理、屏幕尺寸、视口等特性。此外,Playwright 还支持模拟地理位置、区域设置、时区、权限(如通知)和配色方案,使测试更加全面和真实。例如,可以在配置文件中设置全局的区域设置和时区,然后在特定测试中进行覆盖。同时,还可以动态更改地理位置和媒体类型,以适应不同的测试需求。
Playwright 是一个强大的工具,用于在各种浏览器上测试应用,并模拟真实设备如手机和平板。通过配置 `playwright.devices`,可以轻松模拟不同设备的用户代理、屏幕尺寸、视口等特性。此外,Playwright 还支持模拟地理位置、区域设置、时区、权限(如通知)和配色方案,使测试更加全面和真实。例如,可以在配置文件中设置全局的区域设置和时区,然后在特定测试中进行覆盖。同时,还可以动态更改地理位置和媒体类型,以适应不同的测试需求。
20 1
|
24天前
|
JSON 测试技术 持续交付
自动化测试与脚本编写:Python实践指南
自动化测试与脚本编写:Python实践指南
25 1
下一篇
无影云桌面