测试平台系列(70) 丰富断言类型

简介: 丰富断言类型

大家好~我是米洛


我正在从0到1打造一个开源的接口测试平台, 也在编写一套与之对应的完整教程,希望大家多多支持。


回顾


上一节我们支持了SQL类型的构造方法。

接下来我们要讲的是如何丰富我们的断言类型。

基础断言


我们之前的断言部分还是比较残缺的,就好像辟邪剑谱一样。今天我们就来尽量完善下断言的内容。

先看看之前的断言类型:

  • 等于
  • 不等于
  • 属于

但这些往往还不够,我们还需要新增一些。还记得我们之前写的如何比对2个JSON对象吗?我们今天也要把它运用到实战里面。

编写utils/json_compare.py


由于之前已经讲过json对比的思路,所以这边贴一下源码,并把JsonCompare类进行单例包装。


import json
from app.utils.decorator import SingletonDecorator
@SingletonDecorator
class JsonCompare(object):
    def compare(self, exp, act):
        ans = []
        self._compare(exp, act, ans, '')
        return ans
    def _compare(self, a, b, ans, path):
        a = self._to_json(a)
        b = self._to_json(b)
        if type(a) != type(b):
            ans.append(f"{path} 类型不一致, 分别为{type(a)} {type(b)}")
            return
        if isinstance(a, dict):
            keys = []
            for key in a.keys():
                pt = path + "/" + key
                if key in b.keys():
                    self._compare(a[key], b[key], ans, pt)
                    keys.append(key)
                else:
                    ans.append(f"{pt} 在实际结果中不存在")
            for key in b.keys():
                if key not in keys:
                    pt = path + "/" + key
                    ans.append(f"{pt} 在实际结果中多出")
        elif isinstance(a, list):
            i = j = 0
            while i < len(a):
                pt = path + "/" + str(i)
                if j >= len(b):
                    ans.append(f"{pt} 在实际结果中不存在")
                    i += 1
                    j += 1
                    continue
                self._compare(a[i], b[j], ans, pt)
                i += 1
                j += 1
            while j < len(b):
                pt = path + "/" + str(j)
                ans.append(f"{pt} 在预期结果中不存在")
                j += 1
        else:
            if a != b:
                ans.append(
                    f"{path} 数据不一致: {a} "
                    f"!= {b}" if path != "" else
                    f"数据不一致: {a} != {b}")
    def _color(self, text, _type=0):
        if _type == 0:
            # 说明是绿色
            return """<span style="color: #13CE66">{}</span>""".format(text)
        return """<span style="color: #FF4949">{}</span>""".format(text)
    def _weight(self, text):
        return """<span style="font-weight: 700">{}</span>""".format(text)
    def _to_json(self, string):
        try:
            float(string)
            return string
        except:
            try:
                if isinstance(string, str):
                    return json.loads(string)
                return string
            except:
                return string

改写断言方式


看看之前的断言方式:

27.jpg

方式有点少,需要补充

因为我们也不可能补充很多内容,所以我们只添加一些常见的

28.jpg

image

29.jpg

image

我们新增一些,包含/不包含/包含于/不包含于/长度等于/长度大于/长度小于/JSON等于这样的校验方式。并且用emoji区分了是否成功。

来看看效果吧~

30.jpg

image

这样就稍微丰富了咱们的断言手段,但我们还有一些JSON包含等,以及文本比对相似度断言的方式还没派上用场,之后有机会再给大家展示。

今天的内容就分享到这儿了,有兴趣的朋友们可以一起动手写起来呀!~

(本期内容比较少,下期带来重磅的Python的定时任务系列)




相关文章
|
28天前
|
关系型数据库 MySQL 测试技术
【分享】AgileTC测试用例管理平台使用分享
AgileTC 是一个脑图样式测试用例管理平台,支持用例设计、执行与团队协作,帮助测试人员高效管理测试流程。
172 116
【分享】AgileTC测试用例管理平台使用分享
|
26天前
|
人工智能 数据可视化 测试技术
AI测试平台自动遍历:低代码也能玩转全链路测试
AI测试平台的自动遍历功能,通过低代码配置实现Web和App的自动化测试。用户只需提供入口链接或安装包及简单配置,即可自动完成页面结构识别、操作验证,并生成可视化报告,大幅提升测试效率,特别适用于高频迭代项目。
|
1月前
|
人工智能 测试技术 调度
写用例写到怀疑人生?AI 智能测试平台帮你一键生成!
霍格沃兹测试开发学社推出AI智能测试用例生成功能,结合需求文档一键生成高质量测试用例,大幅提升效率,减少重复劳动。支持自定义提示词、多文档分析与批量管理,助力测试人员高效完成测试设计,释放更多时间投入核心分析工作。平台已开放内测,欢迎体验!
|
1月前
|
人工智能 测试技术 项目管理
测试不再碎片化:AI智能体平台「项目资料套件」功能上线!
在实际项目中,需求文档分散、整理费时、测试遗漏等问题常困扰测试工作。霍格沃兹推出AI智能体测试平台全新功能——项目资料套件,可将多个关联文档打包管理,并一键生成测试用例,提升测试完整性与效率。支持套件创建、文档关联、编辑删除及用例生成,适用于复杂项目、版本迭代等场景,助力实现智能化测试协作,让测试更高效、更专业。
|
2月前
|
存储 人工智能 算法
AI测试平台实战:深入解析自动化评分和多模型对比评测
在AI技术迅猛发展的今天,测试工程师面临着如何高效评估大模型性能的全新挑战。本文将深入探讨AI测试平台中自动化评分与多模型对比评测的关键技术与实践方法,为测试工程师提供可落地的解决方案。
|
4月前
|
存储 测试技术 虚拟化
VMmark 4.0.3 - 虚拟化平台基准测试
VMmark 4.0.3 - 虚拟化平台基准测试
95 0
VMmark 4.0.3 - 虚拟化平台基准测试
|
28天前
|
人工智能 自然语言处理 测试技术
AI测试平台的用例管理实践:写得清晰,管得高效,执行更智能
在测试过程中,用例分散、步骤模糊、回归测试效率低等问题常困扰团队。霍格沃兹测试开发学社推出的AI测试平台,打通“用例编写—集中管理—智能执行”全流程,提升测试效率与覆盖率。平台支持标准化用例编写、统一管理操作及智能执行,助力测试团队高效协作,释放更多精力优化测试策略。目前平台已开放内测,欢迎试用体验!
|
2月前
|
存储 人工智能 文字识别
从零开始打造AI测试平台:文档解析与知识库构建详解
AI时代构建高效测试平台面临新挑战。本文聚焦AI问答系统知识库建设,重点解析文档解析关键环节,为测试工程师提供实用技术指导和测试方法论
|
2月前
|
人工智能 安全 数据可视化
安全测试平台的选型标准与搭建思路
随着企业安全需求升级,传统漏洞扫描和渗透测试已无法满足要求。构建安全测试平台(STP)成为趋势,实现漏洞扫描、权限评估、接口测试等工作的平台化运营。本文从选型标准、平台架构、模块功能等六个方面,系统讲解如何搭建企业级安全测试平台,提升安全能力。
|
5月前
|
安全 前端开发 Linux
Immunity CANVAS Professional 7.27 (macOS, Linux, Windows) - 渗透测试和漏洞利用平台
Immunity CANVAS Professional 7.27 (macOS, Linux, Windows) - 渗透测试和漏洞利用平台
167 3
Immunity CANVAS Professional 7.27 (macOS, Linux, Windows) - 渗透测试和漏洞利用平台

热门文章

最新文章