网络抓包数据文件(.pcap/.cap)解析工具(Java实现)

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: pcap/.cap文件是常用的数据报存储格式文件,数据按照特定格式存储,普通编辑器无法正常打开该类型文件,使用Ultra Edit编辑器能够以16进制的格式查看数据,无法直观查看数据重要信息。需要特定的解析工具软件读取查看如WiresharkPortable或Microsoft Network Monitor等

前言

pcap/.cap文件是常用的数据报存储格式文件,数据按照特定格式存储,普通编辑器无法正常打开该类型文件,使用Ultra Edit编辑器能够以16进制的格式查看数据,无法直观查看数据重要信息。需要特定的解析工具软件读取查看如WiresharkPortable或Microsoft Network Monitor等。


问题


然而一些开发任务需要数据文件(.pcap/.cap)某项信息进行后续处理,无法使用软件获取信息输入到程序中,对开发任务带来一些困难。


解决


引入pcap4j库,该库通过网络接口捕获数据包并将它们转换为 Java 对象。可以通过从数据包转换而来的 Java 对象来获取/设置数据包头的每个字段。您还可以从头开始制作数据包对象。pcap4j还具有更强大的功能,有兴趣可关注微信公众号:Java烂笔头,回复:pcap4j-1,查看完整源码及说明。


示例代码

maven 依赖

<dependencies>
    <dependency>
      <groupId>org.pcap4j</groupId>
      <artifactId>pcap4j-core</artifactId>
      <version>1.8.2</version>
    </dependency>
    <dependency>
      <groupId>org.pcap4j</groupId>
      <artifactId>pcap4j-packetfactory-static</artifactId>
      <version>1.8.2</version>
    </dependency>
  </dependencies>
package org.pcap4j.sample;
import java.io.EOFException;
import java.util.concurrent.TimeoutException;
import org.pcap4j.core.NotOpenException;
import org.pcap4j.core.PcapHandle;
import org.pcap4j.core.PcapHandle.TimestampPrecision;
import org.pcap4j.core.PcapNativeException;
import org.pcap4j.core.Pcaps;
import org.pcap4j.packet.Packet;
@SuppressWarnings("javadoc")
public class ReadPacketFile {
  private static final int COUNT = 5;
  private static final String PCAP_FILE_KEY = ReadPacketFile.class.getName() + ".pcapFile";
  private static final String PCAP_FILE =
      System.getProperty(PCAP_FILE_KEY, "src/main/resources/echoAndEchoReply.pcap");
  private ReadPacketFile() {}
  public static void main(String[] args) throws PcapNativeException, NotOpenException {
    PcapHandle handle;
    try {
      handle = Pcaps.openOffline(PCAP_FILE, TimestampPrecision.NANO);
    } catch (PcapNativeException e) {
      handle = Pcaps.openOffline(PCAP_FILE);
    }
    for (int i = 0; i < COUNT; i++) {
      try {
        Packet packet = handle.getNextPacketEx();
        System.out.println(handle.getTimestamp());
        System.out.println(packet);
      } catch (TimeoutException e) {
      } catch (EOFException e) {
        System.out.println("EOF");
        break;
      }
    }
    handle.close();
  }
}
2012-09-12 13:27:27.609228
[Ethernet Header (14 bytes)]
  Destination address: 00:01:8e:f9:a7:60
  Source address: 04:7d:7b:4c:2f:0a
  Type: 0x0800 (IPv4)
[IPv4 Header (20 bytes)]
  Version: 4 (IPv4)
  IHL: 5 (20 [bytes])
  TOS: [precedence: 0 (Routine)] [tos: 0 (Default)] [mbz: 0]
  Total length: 60 [bytes]
  Identification: 18814
  Flags: (Reserved, Don't Fragment, More Fragment) = (false, false, false)
  Fragment offset: 0 (0 [bytes])
  TTL: 128
  Protocol: 1 (ICMPv4)
  Header checksum: 0x0000
  Source address: /192.168.2.101
  Destination address: /192.168.2.1
[ICMPv4 Common Header (4 bytes)]
  Type: 8 (Echo)
  Code: 0 (No Code)
  Checksum: 0x4c5b
[ICMPv4 Echo Header (4 bytes)]
  Identifier: 256
  SequenceNumber: 1
[data (32 bytes)]
  Hex stream: 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
2012-09-12 13:27:27.609965
[Ethernet Header (14 bytes)]
  Destination address: 04:7d:7b:4c:2f:0a
  Source address: 00:01:8e:f9:a7:60
  Type: 0x0800 (IPv4)
[IPv4 Header (20 bytes)]
  Version: 4 (IPv4)
  IHL: 5 (20 [bytes])
  TOS: [precedence: 0 (Routine)] [tos: 0 (Default)] [mbz: 0]
  Total length: 60 [bytes]
  Identification: 30935
  Flags: (Reserved, Don't Fragment, More Fragment) = (false, false, false)
  Fragment offset: 0 (0 [bytes])
  TTL: 64
  Protocol: 1 (ICMPv4)
  Header checksum: 0x7c33
  Source address: /192.168.2.1
  Destination address: /192.168.2.101
[ICMPv4 Common Header (4 bytes)]
  Type: 0 (Echo Reply)
  Code: 0 (No Code)
  Checksum: 0x545b
[ICMPv4 Echo Reply Header (4 bytes)]
  Identifier: 256
  SequenceNumber: 1
[data (32 bytes)]
  Hex stream: 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
2012-09-12 13:27:28.611932
[Ethernet Header (14 bytes)]
  Destination address: 00:01:8e:f9:a7:60
  Source address: 04:7d:7b:4c:2f:0a
  Type: 0x0800 (IPv4)
[IPv4 Header (20 bytes)]
  Version: 4 (IPv4)
  IHL: 5 (20 [bytes])
  TOS: [precedence: 0 (Routine)] [tos: 0 (Default)] [mbz: 0]
  Total length: 60 [bytes]
  Identification: 18815
  Flags: (Reserved, Don't Fragment, More Fragment) = (false, false, false)
  Fragment offset: 0 (0 [bytes])
  TTL: 128
  Protocol: 1 (ICMPv4)
  Header checksum: 0x0000
  Source address: /192.168.2.101
  Destination address: /192.168.2.1
[ICMPv4 Common Header (4 bytes)]
  Type: 8 (Echo)
  Code: 0 (No Code)
  Checksum: 0x4c5a
[ICMPv4 Echo Header (4 bytes)]
  Identifier: 256
  SequenceNumber: 2
[data (32 bytes)]
  Hex stream: 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
2012-09-12 13:27:28.61251
[Ethernet Header (14 bytes)]
  Destination address: 04:7d:7b:4c:2f:0a
  Source address: 00:01:8e:f9:a7:60
  Type: 0x0800 (IPv4)
[IPv4 Header (20 bytes)]
  Version: 4 (IPv4)
  IHL: 5 (20 [bytes])
  TOS: [precedence: 0 (Routine)] [tos: 0 (Default)] [mbz: 0]
  Total length: 60 [bytes]
  Identification: 30936
  Flags: (Reserved, Don't Fragment, More Fragment) = (false, false, false)
  Fragment offset: 0 (0 [bytes])
  TTL: 64
  Protocol: 1 (ICMPv4)
  Header checksum: 0x7c32
  Source address: /192.168.2.1
  Destination address: /192.168.2.101
[ICMPv4 Common Header (4 bytes)]
  Type: 0 (Echo Reply)
  Code: 0 (No Code)
  Checksum: 0x545a
[ICMPv4 Echo Reply Header (4 bytes)]
  Identifier: 256
  SequenceNumber: 2
[data (32 bytes)]
  Hex stream: 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69
2012-09-12 13:27:29.611909
[Ethernet Header (14 bytes)]
  Destination address: 00:01:8e:f9:a7:60
  Source address: 04:7d:7b:4c:2f:0a
  Type: 0x0800 (IPv4)
[IPv4 Header (20 bytes)]
  Version: 4 (IPv4)
  IHL: 5 (20 [bytes])
  TOS: [precedence: 0 (Routine)] [tos: 0 (Default)] [mbz: 0]
  Total length: 60 [bytes]
  Identification: 18816
  Flags: (Reserved, Don't Fragment, More Fragment) = (false, false, false)
  Fragment offset: 0 (0 [bytes])
  TTL: 128
  Protocol: 1 (ICMPv4)
  Header checksum: 0x0000
  Source address: /192.168.2.101
  Destination address: /192.168.2.1
[ICMPv4 Common Header (4 bytes)]
  Type: 8 (Echo)
  Code: 0 (No Code)
  Checksum: 0x4c59
[ICMPv4 Echo Header (4 bytes)]
  Identifier: 256
  SequenceNumber: 3
[data (32 bytes)]
  Hex stream: 61 62 63 64 65 66 67 68 69 6a 6b 6c 6d 6e 6f 70 71 72 73 74 75 76 77 61 62 63 64 65 66 67 68 69

完整源码


示例源码关注微信公众号:Java烂笔头,回复:pcap4j


应用场景

需求:当数据块比较大时,数据块会被压缩,当需要通过抓包来查看数据包内容时,无法直接通过软件查看。给实际工程问题排查带来不便,需要开发一个工具,判断数据是否被压缩,如果压缩进行解压。

              功能:解析报文,报文协议如下:提取出压缩的报文,并解压其中的数据,输出解压后的二进制数据。

               输入:抓取的设备的报文文件。

               输出:将解压的二进制数据输出。

                       格式:

                               时间:

                               源ip:

                               宿ip:

                               数据:


思路:通过pcap4j解析库可以直接读取每条数据的时间、源地址、宿地址、十六进制数据,其次通过Microsoft Network Monitor软件查看报文数据,找出表示是否压缩的十六进制数据位,找出每条数据的表示压缩位的位置规律,将该位转为二进制的最后一位表示是否压缩,1表示压缩,0表示未压缩。然后将压缩的数据转为二进制输出即可。

image.png


image.pngimage.png

相关文章
|
14天前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
164 7
深入解析图神经网络注意力机制:数学原理与可视化实现
|
4天前
|
XML JavaScript Android开发
【Android】网络技术知识总结之WebView,HttpURLConnection,OKHttp,XML的pull解析方式
本文总结了Android中几种常用的网络技术,包括WebView、HttpURLConnection、OKHttp和XML的Pull解析方式。每种技术都有其独特的特点和适用场景。理解并熟练运用这些技术,可以帮助开发者构建高效、可靠的网络应用程序。通过示例代码和详细解释,本文为开发者提供了实用的参考和指导。
43 15
|
5天前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
4天前
|
前端开发 Cloud Native Java
Java||Springboot读取本地目录的文件和文件结构,读取服务器文档目录数据供前端渲染的API实现
博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
Java||Springboot读取本地目录的文件和文件结构,读取服务器文档目录数据供前端渲染的API实现
|
13天前
|
缓存 边缘计算 安全
阿里云CDN:全球加速网络的实践创新与价值解析
在数字化浪潮下,用户体验成为企业竞争力的核心。阿里云CDN凭借技术创新与全球化布局,提供高效稳定的加速解决方案。其三层优化体系(智能调度、缓存策略、安全防护)确保低延迟和高命中率,覆盖2800+全球节点,支持电商、教育、游戏等行业,帮助企业节省带宽成本,提升加载速度和安全性。未来,阿里云CDN将继续引领内容分发的行业标准。
59 7
|
20天前
|
云安全 人工智能 安全
阿里云网络安全体系解析:如何构建数字时代的"安全盾牌"
在数字经济时代,阿里云作为亚太地区最大的云服务提供商,构建了行业领先的网络安全体系。本文解析其网络安全架构的三大核心维度:基础架构安全、核心技术防护和安全管理体系。通过技术创新与体系化防御,阿里云为企业数字化转型提供坚实的安全屏障,确保数据安全与业务连续性。案例显示,某金融客户借助阿里云成功拦截3200万次攻击,降低运维成本40%,响应时间缩短至8分钟。未来,阿里云将继续推进自适应安全架构,助力企业提升核心竞争力。
|
27天前
|
Java API 数据处理
深潜数据海洋:Java文件读写全面解析与实战指南
通过本文的详细解析与实战示例,您可以系统地掌握Java中各种文件读写操作,从基本的读写到高效的NIO操作,再到文件复制、移动和删除。希望这些内容能够帮助您在实际项目中处理文件数据,提高开发效率和代码质量。
29 4
|
1月前
|
存储 算法 Java
解锁“分享文件”高效密码:探秘 Java 二叉搜索树算法
在信息爆炸的时代,文件分享至关重要。二叉搜索树(BST)以其高效的查找性能,为文件分享优化提供了新路径。本文聚焦Java环境下BST的应用,介绍其基础结构、实现示例及进阶优化。BST通过有序节点快速定位文件,结合自平衡树、多线程和权限管理,大幅提升文件分享效率与安全性。代码示例展示了文件插入与查找的基本操作,适用于大规模并发场景,确保分享过程流畅高效。掌握BST算法,助力文件分享创新发展。
|
2月前
|
网络协议 Unix Linux
深入解析:Linux网络配置工具ifconfig与ip命令的全面对比
虽然 `ifconfig`作为一个经典的网络配置工具,简单易用,但其功能已经不能满足现代网络配置的需求。相比之下,`ip`命令不仅功能全面,而且提供了一致且简洁的语法,适用于各种网络配置场景。因此,在实际使用中,推荐逐步过渡到 `ip`命令,以更好地适应现代网络管理需求。
66 11
|
3月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
100 17

推荐镜像

更多