spark on k8s的动态资源分配和external shuffle Service以及任务的队列资源管理

简介: spark on k8s的动态资源分配和external shuffle Service以及任务的队列资源管理

我们知道目前在spark on k8s的官网中,这里有两项很明显的future work。


动态资源分配和外部的shuffle serivce

任务队列以及资源管理

也就是说,目前这两项spark还是不支持的,借助于广大社区的力量,各个大厂都提出了自己的开源方案


外部的shuffle service通过RSS(remote shuffle service)来解决

关于RSS可以参考spark remote shuffle service(RSS)杂谈, 简短的解释一下:在yarn中 动态资源分配是需要通过外部的shuffle service来实现的(目前也可以不基于外部的shuffle service。具体参考SPAKR-27963),而在hadoop的时代,是可以通过在yarn上开启shuffle service的,也就是说在每个节点上开启shuffle service,spark的shuffle RDD的中间结果就会保存在yarn的nodeManager上,这样每个executor空闲了以后就不需要等待job运行完了才释放executor,这样就会释放yarn的资源,因为shuffle RDD的中间结果是保存在了nodeManager上,下一个spark task需要的时候就可以从nodeManager上拉取,但是这对于kubernetes是不适合的,因为spark的executor是运行在pod上的,pod的如果摧毁了,中间结果也就不存在了。所以就引入了RSS,把中间结果存储专门的集中的shuffle service上来解决这个问题,(当然如果不开启动态资源分配,shuffle的中间结果,也会存在pod上,但是存储的路径是/var/lib,这是个系统盘,最好是进行磁盘的挂载)


对于任务队列以及资源管理

我们知道spark on yarn的时候我们的任务是跑在yarn上的,那队列的分配肯定是由yarn这个资源管理框架来做啊,所以kuberentes社区也提出了YuniKorn调度器,这个调度器的功能其实就是为了满足批任务和服务部署的需求,具体的可以参考spark on k8s:apache YuniKorn(Incubating)的助力,

其实这个任务调度器的提供了不仅仅任务队列和资源管理的作用,当然该调度器还是处于孵化阶段,好多功能有待提高和完善。


相关文章
|
1月前
|
Kubernetes 调度 容器
【赵渝强老师】K8s中Job控制器单工作队列的串行方式
Kubernetes中的Job控制器用于管理一次性任务,确保任务完成后不再重启。本文介绍了Job的工作原理、运行方式及示例,包括创建Job、查看Job和Pod信息等步骤,并附有视频讲解。
|
4月前
|
消息中间件 Kubernetes Kafka
微服务从代码到k8s部署应有尽有系列(八、各种队列)
微服务从代码到k8s部署应有尽有系列(八、各种队列)
|
1月前
|
分布式计算 监控 大数据
如何优化Spark中的shuffle操作?
【10月更文挑战第18天】
|
1月前
|
Kubernetes 调度 容器
【赵渝强老师】K8s的Job控制器多工作队列的并行方式
Kubernetes Job 是一次性任务控制器,用于控制 Pod 中的容器执行特定任务。本文介绍了 Job 控制器的工作原理、运行方式及多工作队列并行执行的示例。示例中创建了 5 个作业,以 3 个队列并行执行,整个过程需 2 分钟。文中还提供了详细的 YAML 文件配置和执行命令。
|
2月前
|
SQL 分布式计算 大数据
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
71 0
|
2月前
|
SQL 分布式计算 算法
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
88 0
|
6月前
|
分布式计算 Kubernetes Spark
大数据之spark on k8s
大数据之spark on k8s
224 2
|
7月前
|
分布式计算 Kubernetes 监控
容器服务Kubernetes版产品使用合集之怎么实现把 spark 跑在k8s
容器服务Kubernetes版,作为阿里云提供的核心服务之一,旨在帮助企业及开发者高效管理和运行Kubernetes集群,实现应用的容器化与微服务化。以下是关于使用这些服务的一些建议和合集,涵盖基本操作、最佳实践、以及一些高级功能的使用方法。
|
7月前
|
机器学习/深度学习 分布式计算 监控
如何解决Spark在深度学习中的资源消耗问题?
【5月更文挑战第2天】如何解决Spark在深度学习中的资源消耗问题?
95 5
|
7月前
|
分布式计算 Spark 索引
Spark学习---day07、Spark内核(Shuffle、任务执行)
Spark学习---day07、Spark内核(源码提交流程、任务执行)
118 2

热门文章

最新文章