MIT新研究:AI仅靠看X光片就能准确识别患者种族,但没人知道为什么

简介: MIT新研究:AI仅靠看X光片就能准确识别患者种族,但没人知道为什么

图片.png

大数据文摘作品作者:Mickey 


人类对于某人是黑人、亚洲人还是白人的判断主要来自于某些外貌特征:皮肤、头发、眼睛这类外在体征,但是,如果仅从一个人的胸部X光片、肢体CT扫描和乳房X光片等影像资料,就能判断出他/她的种族,你相信吗? 


当然不,毕竟连最专业的医学影像专家都无法识别。不过最近,根据麻省理工学院的一项研究,经过训练的人工智能可以有效识别这些没有被标注的X光片的主人,到底是黑人、黄种人还是白人,准确率达到90%以上,即使这些图像是损坏、裁剪和噪声的医学影像,而这一点通常是临床专家无法做到的。


 并且,研究者们强调,这一识别结果不是由于某些已知与族裔相关的身体特征关联导致的(例如通过体重指数 [AUC 0·55]、疾病分布 [0·61] 和乳房密度 [ 0·61]等等)。 


这一研究结果目前发布在《柳叶刀数字健康(Lancet Digit Health)》上。

图片.png


AI能通过胸片识别患者种族?“我以为我的学生疯了”

 AI模型在医学影像识别领域的能力早已有目共睹,但是麻省理工这一研究之所以引发了极大的关注,一方面是由于其高精度识别率背后的原因仍是个“黑盒”,另一方面,研究者们也不得不担忧,人工智能是否早已经将“种族偏见”融入了人类从未想到的方方面面。 


在麻省理工的这一研究中,研究者们了使用私人(Emory CXR、Emory 胸部 CT、Emory 颈椎和 Emory 乳房 X 线照片)和公共(MIMIC-CXR、CheXpert、国家肺癌筛查试验、RSNA 肺栓塞 CT 和数字手部图谱)数据集。该团队发现被训练过的人工智能可以仅从这些医学图像中,高准确率地预测患者自我报告的种族。


 利用胸部 X 光片、肢体 X 光片、胸部 CT 扫描和乳房 X 光片的成像数据,该团队训练了一个深度学习模型来识别图像的主人是白人、黑人还是亚洲人——尽管这些图像本身并没有明确提及病人的种族。 

图片.png

  目前,即使是最有经验的医生也无法做到这一点,并且也尚不清楚该模型是如何做到的。


  “当我的研究生向我展示这篇论文中的一些结果时,我认为这肯定是一个错误,”麻省理工学院电气工程和计算机科学助理教授、该论文的合著者Marzyeh Ghassemi说,“我真的以为我的学生疯了。”


 为了梳理和弄清这一切的神奇的识别系统是如何实现的,研究人员进行了一系列实验。为了研究种族检测的可能机制,他们研究了诸如解剖结构差异、骨密度、图像分辨率等变量。但是,抛开这些变量后,AI仍然具有通过胸部 X 光检测种族的高能力。 


该团队尝试了很多方式,试图解释AI是如何识别的:不同种族群体之间身体特征的差异(体质、乳房密度)、疾病分布(之前的研究表明,黑人患者患心脏病等健康问题的几率更高) )、特定位置或特定组织的差异、社会偏见和环境压力的影响、深度学习系统在多种人口统计和患者因素结合时检测种族的能力,以及特定图像区域是否有助于识别种族。  


例如,骨密度测试使用的图像中,骨较厚的部分呈白色,较薄的部分呈灰色或半透明。科学家们认为,由于黑人通常具有较高的骨矿物质密度,因此颜色差异有助于人工智能模型检测种族。为了切断这一点,他们用过滤器调整了图像,这样模型就不会出现颜色差异。事实证明,调整影像颜色并没有扰乱模型——它仍然可以准确地预测种族。(“曲线下面积”值,即定量诊断测试准确性的衡量标准,为 0.94–0.96)。因此,模型的学习特征似乎依赖于图像的区域。


  “这些结果最初令人困惑,因为我们研究团队无法为这项任务找到一个好的解释,”Marzyeh Ghassemi 表示,“即使将这些医学图像调整到已经不能被称为医学图像的样子,深度模型的识别正确率仍能保持非常高的性能。” 


防不胜防的AI偏见

 但这一结果也令研究者们颇为忧虑。 


算法的错误训练会导致偏见,这一点毋庸置疑,而当人工智能反映了产生这些算法的人类的无意识思想、种族主义和偏见时,它可能会导致严重的伤害。

图片.png


 “这令人担忧,因为AI超人的能力通常更难以控制、规范和防止伤害他人。”


 在临床环境中,算法识别可以帮助医生判断患者是否适合化疗,决定患者的分类,或决定是否需要转入 ICU。“我们认为算法只关注生命体征或实验室测试,但这一研究结果表明,它们也有可能关注你的种族、民族、性别,即使所有这些信息都被隐藏了,”论文合著者、麻省理工学院 IMES 首席研究科学家、哈佛医学院医学副教授 Leo Anthony Celi 说。“仅仅因为你的算法中有不同群体的代表,这并不能保证它不会延续或放大现有的差异和不平等。为算法提供更多具有代表性的数据并不是万能的。


 以往在其他领域的相关案例数不胜数,例如,计算机程序错误地标记了黑人被告再次犯罪的可能性是白人被告的两倍。当人工智能使用成本作为健康需求的判断因素时,它会将黑人患者识别为比同样患病的白人患者更健康,这样可以使得花在他们身上的钱更少。自然语言处理中存在偏见的例子是无穷无尽的,甚至 AI 过去写剧本也依赖于使用有害的刻板印象来进行选角。

图片.png


 但麻省理工学院的科学家们的研究发现了另一种重要的、很大程度上未被充分探索的模式:医学图像。


 值得注意的是,Ghassemi 和 Celi 的其他研究成果还发现,模型还可以从临床记录中识别患者自我报告的种族,即使这些记录被删去了明确的种族指标,而人类专家也无法从相同的临床记录编辑中准确预测患者种族。


 “我们需要让社会科学家参与进来,只有是临床医生、公共卫生从业者、计算机科学家和工程师是不够的。医疗保健是一个社会文化问题,就像它是一个医学问题一样。我们需要另一组专家来权衡并就我们如何设计、开发、部署和评估这些算法提供意见和反馈,”Celi 说。


 “我们还需要询问数据科学家,在对数据进行任何探索之前,是否存在差异?哪些患者群体被边缘化?这些差异的驱动因素是什么?是否可以获得护理?是来自护理提供者的主观性吗?如果我们不理解这一点,我们将没有机会识别算法肯带来的意外后果。” 


“正如研究所展示,算法‘看到种族的事实可能很危险。但一个重要且相关的事实是,如果谨慎使用,算法也可以消除偏见,”加州大学伯克利分校副教授 Ziad Obermeyer 说,他的研究重点是人工智能应用于健康。“在我们自己的工作中,我们也发现从患者疼痛经历中学习的算法可以在 X 射线中发现新的膝关节疼痛源,这些源头对黑人患者的影响尤其严重,而放射科医师也严重忽视了这些原因。因此,就像任何工具一样,算法既可以是邪恶的力量,也可以是善良的力量——这取决于我们,以及我们在构建算法时所做的选择。”


素材来源:

https://news.mit.edu/2022/artificial-intelligence-predicts-patients-race-from-medical-images-0520

https://pubmed.ncbi.nlm.nih.gov/35568690/

相关文章
|
2月前
|
机器学习/深度学习 人工智能
打开AI黑匣子,三段式AI用于化学研究,优化分子同时产生新化学知识,登Nature
【10月更文挑战第11天】《自然》杂志发表了一项突破性的化学研究,介绍了一种名为“Closed-loop transfer”的AI技术。该技术通过数据生成、模型训练和实验验证三个阶段,不仅优化了分子结构,提高了光稳定性等性质,还发现了新的化学现象,为化学研究提供了新思路。此技术的应用加速了新材料的开发,展示了AI在解决复杂科学问题上的巨大潜力。
38 1
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
AI自己长出了类似大脑的脑叶?新研究揭示LLM特征的惊人几何结构
近年来,大型语言模型(LLM)的内部运作机制备受关注。麻省理工学院的研究人员在论文《The Geometry of Concepts: Sparse Autoencoder Feature Structure》中,利用稀疏自编码器(SAE)分析LLM的激活空间,揭示了其丰富的几何结构。研究发现,特征在原子、大脑和星系三个尺度上展现出不同的结构,包括晶体结构、中尺度模块化结构和大尺度点云结构。这些发现不仅有助于理解LLM的工作原理,还可能对模型优化和其他领域产生重要影响。
44 25
|
9天前
|
人工智能 数据挖掘
AI长脑子了?LLM惊现人类脑叶结构并有数学代码分区,MIT大牛新作震惊学界!
麻省理工学院的一项新研究揭示了大型语言模型(LLM)内部概念空间的几何结构,与人脑类似。研究通过分析稀疏自编码器生成的高维向量,发现了概念空间在原子、大脑和星系三个层次上的独特结构,为理解LLM的内部机制提供了新视角。论文地址:https://arxiv.org/abs/2410.19750
50 12
|
4天前
|
人工智能 小程序 数据处理
uni-app开发AI康复锻炼小程序,帮助肢体受伤患者康复!
近期,多家康复机构咨询AI运动识别插件是否适用于肢力运动受限患者的康复锻炼。本文介绍该插件在康复锻炼中的应用场景,包括康复运动指导、运动记录、恢复程度记录及过程监测。插件集成了人体检测、姿态识别等功能,支持微信小程序平台,使用便捷,安全可靠,帮助康复治疗更加高效精准。
|
23天前
|
人工智能 开发者
人类自身都对不齐,怎么对齐AI?新研究全面审视偏好在AI对齐中的作用
论文《AI对齐中的超越偏好》挑战了偏好主义AI对齐方法,指出偏好无法全面代表人类价值观,存在冲突和变化,并受社会影响。文章提出基于角色的对齐方案,强调AI应与其社会角色相关的规范标准一致,而非仅关注个人偏好,旨在实现更稳定、适用性更广且更符合社会利益的AI对齐。论文链接:https://arxiv.org/pdf/2408.16984
33 2
|
1月前
|
人工智能 知识图谱
成熟的AI要学会自己搞研究!MIT推出科研特工
MIT推出科研特工SciAgents,结合生成式AI、本体表示和多代理建模,实现科学发现的自动化。通过大规模知识图谱和多代理系统,SciAgents能探索新领域、识别复杂模式,加速新材料发现,展现跨学科创新潜力。
43 12
|
1月前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
人工智能 算法 程序员
8月13日科技联播:英情报局渲染中国5G技术威胁,AI技术能准确识别代码真实作者
程序员注意了!AI技术已经能准确识别代码的真实作者了,自己的锅还得自己背!美国重返月球计划要泡汤?都是没有新款太空服惹的祸......英国过度渲染中国5G威胁,谁还不是吓大的,只怕是对我国的技术进步感到不安吧,今天的科技圈比较平静,跟小编一起看看今天的热门新闻有哪些!
1840 0
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术深度解析:从基础到应用的全面介绍
人工智能(AI)技术的迅猛发展,正在深刻改变着我们的生活和工作方式。从自然语言处理(NLP)到机器学习,从神经网络到大型语言模型(LLM),AI技术的每一次进步都带来了前所未有的机遇和挑战。本文将从背景、历史、业务场景、Python代码示例、流程图以及如何上手等多个方面,对AI技术中的关键组件进行深度解析,为读者呈现一个全面而深入的AI技术世界。
50 10
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
转载:【AI系统】AI的领域、场景与行业应用
本文概述了AI的历史、现状及发展趋势,探讨了AI在计算机视觉、自然语言处理、语音识别等领域的应用,以及在金融、医疗、教育、互联网等行业中的实践案例。随着技术进步,AI模型正从单一走向多样化,从小规模到大规模分布式训练,企业级AI系统设计面临更多挑战,同时也带来了新的研究与工程实践机遇。文中强调了AI基础设施的重要性,并鼓励读者深入了解AI系统的设计原则与研究方法,共同推动AI技术的发展。
转载:【AI系统】AI的领域、场景与行业应用
下一篇
DataWorks