机器学习系列(6)_特征工程03碳排放小案例(下)

简介: 机器学习系列(6)_特征工程03碳排放小案例

三、卡方检验



取三个特征的结果:

chivalue, pvalues_chi = chi2(X_fsvar,y)  
chivalue
cross_val_score(RFC(n_estimators=10,random_state=0),X_fschi,y,cv=3).mean()
chivalue, pvalues_chi = chi2(X_fsvar,y)  
chivalue
cross_val_score(RFC(n_estimators=10,random_state=0),X_fschi,y,cv=3).mean()

478b13d6463d4c13a769b9181ea0584c.png

取全部特征的结果:


四、F检验



# F检验 
from sklearn.feature_selection import f_classif 
F,pvalues_f=f_classif(X_fsvar,y)
F 
k=F.shape[0]-(pvalues_f>0.05).sum() 
X_fsF=SelectKBest(f_classif,k=k).fit_transform(X_fsvar,y)
cross_val_score(RFC(n_estimators=10,random_state=0),X_fsF,y,cv=3).mean()

f71270843e6949aba70294f4ba46adb8.png

from sklearn.feature_selection import f_classif
F,pvalues_f=f_classif(X,y)
F
k=F.shape[0]-(pvalues_f>0.05).sum() 
X_fsF=SelectKBest(f_classif,k=k).fit_transform(X,y)
cross_val_score(RFC(n_estimators=10,random_state=0),X_fsF,y,cv=9).mean()

c9e10b11035146f5b81b9a9c41c295ad.png


五、互信息法



# 4互信息法 
from sklearn.feature_selection import mutual_info_classif as MIC
result=MIC(X_fsvar,y)
k=result.shape[0]-sum(result<=0)
X_fsmic=SelectKBest(MIC,k=k).fit_transform(X_fsvar,y)
cross_val_score(RFC(n_estimators=10,random_state=0),X_fsmic,y,cv=5).mean()

2c4c3e6dde684943a3f3ae653d64cf6e.png


六、嵌入法



# 6 嵌入法
from sklearn.feature_selection import SelectFromModel
from sklearn.ensemble import RandomForestClassifier as RFC 
RFC_=RFC(n_estimators=10,random_state=0)
X_embedded=SelectFromModel(RFC_,threshold=0.005).fit_transform(X,y)
X_embedded.shape # 结果:可以减去两个特征,剩下7个
#通过学习曲线获取阈值
import numpy as np
import matplotlib.pyplot as plt
RFC_.fit(X,y).feature_importances_
threshold = np.linspace(0,(RFC_.fit(X,y).feature_importances_).max(),20)
score = []
for i in threshold:
    X_embedded = SelectFromModel(RFC_,threshold=i).fit_transform(X,y)
    once = cross_val_score(RFC_,X_embedded,y,cv=5).mean()
    score.append(once)
plt.plot(threshold,score)
plt.show()

52559a26b503466f99f694226f3017d6.png

X_embedded=SelectFromModel(RFC_,threshold=0.005).fit_transform(X,y)
X_embedded.shape 
cross_val_score(RFC_,X_embedded,y,cv=5).mean()

将正确率高的学习曲线进行放大

# 通过学习曲线选取
#liyupudata
score2 = []
for i in np.linspace(0,0.112,20):
    X_embedded = SelectFromModel(RFC_,threshold=i).fit_transform(X,y)
    once = cross_val_score(RFC_,X_embedded,y,cv=5).mean()
    score2.append(once)
plt.figure(figsize=[20,5])
plt.plot(np.linspace(0,0.112,20),score2)
plt.xticks(np.linspace(0,0.112,20))
plt.show()

cf143992643945c19e29b8a79e745616.png


七、包装法



#liyupudata
from sklearn.feature_selection import RFE
RFC_ = RFC(n_estimators =100,random_state=0) 
selector = RFE(RFC_, n_features_to_select=9, step=50).fit(X, y)  
selector.support_.sum() 
selector.ranking_  
X_wrapper = selector.transform(X)
cross_val_score(RFC_,X_wrapper,y,cv=5).mean()

66553a3ad21a4b1eb4bd059c3b112929.png

# 通过学习曲线选取
#liyupudata
score = []
for i in range(1,9,1):
    X_wrapper = RFE(RFC_,n_features_to_select=i, step=50).fit_transform(X,y)
    once = cross_val_score(RFC_,X_wrapper,y,cv=5).mean()
    score.append(once)
plt.figure(figsize=[20,5])
plt.plot(range(1,9,1),score)
plt.xticks(range(1,9,1))
plt.show()

fbdf704d26084b49b029db38ce734fb5.png

相关文章
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
62 1
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
|
5月前
|
机器学习/深度学习 算法 数据挖掘
机器学习之sklearn基础——一个小案例,sklearn初体验
机器学习之sklearn基础——一个小案例,sklearn初体验
133 6
|
5月前
|
机器学习/深度学习 算法
【阿旭机器学习实战】【30】二手车价格预估--KNN回归案例
【阿旭机器学习实战】【30】二手车价格预估--KNN回归案例
|
3月前
|
机器学习/深度学习 人工智能 数据处理
【人工智能】项目实践与案例分析:利用机器学习探测外太空中的系外行星
探测外太空中的系外行星是天文学和天体物理学的重要研究领域。随着望远镜观测技术的进步和大数据的积累,科学家们已经能够观测到大量恒星的光度变化,并尝试从中识别出由行星凌日(行星经过恒星前方时遮挡部分光线)引起的微小亮度变化。然而,由于数据量巨大且信号微弱,传统方法难以高效准确地识别所有行星信号。因此,本项目旨在利用机器学习技术,特别是深度学习,从海量的天文观测数据中自动识别和分类系外行星的信号。这要求设计一套高效的数据处理流程、构建适合的机器学习模型,并实现自动化的预测和验证系统。
70 1
【人工智能】项目实践与案例分析:利用机器学习探测外太空中的系外行星
|
2月前
|
机器学习/深度学习 人工智能 算法
利用机器学习预测股市趋势:一个实战案例
【9月更文挑战第5天】在这篇文章中,我们将探索如何使用机器学习技术来预测股市趋势。我们将通过一个简单的Python代码示例来演示如何实现这一目标。请注意,这只是一个入门级的示例,实际应用中可能需要更复杂的模型和更多的数据。
|
6月前
|
机器学习/深度学习 数据采集 算法
探索机器学习中的特征工程
【5月更文挑战第10天】 在机器学习领域,特征工程扮演着至关重要的角色。它涉及选择、修改和创造从原始数据中提取的特征,旨在提高模型的性能。本文将深入探讨特征工程的多个方面,包括数据清洗、特征选择、维度缩减以及特征编码等,同时提供实用的技巧和策略,帮助读者构建出更有效的机器学习模型。
|
4月前
|
机器学习/深度学习 人工智能
8个特征工程技巧提升机器学习预测准确性
8个特征工程技巧提升机器学习预测准确性
109 6
8个特征工程技巧提升机器学习预测准确性
|
3月前
|
机器学习/深度学习 SQL 数据采集
"解锁机器学习数据预处理新姿势!SQL,你的数据金矿挖掘神器,从清洗到转换,再到特征工程,一网打尽,让数据纯净如金,模型性能飙升!"
【8月更文挑战第31天】在机器学习项目中,数据质量至关重要,而SQL作为数据预处理的强大工具,助力数据科学家高效清洗、转换和分析数据。通过去除重复记录、处理缺失值和异常值,SQL确保数据纯净;利用数据类型转换和字符串操作,SQL重塑数据结构;通过复杂查询生成新特征,SQL提升模型性能。掌握SQL,就如同拥有了开启数据金矿的钥匙,为机器学习项目奠定坚实基础。
38 0
|
3月前
|
机器学习/深度学习 数据采集 算法
如何使用机器学习神器sklearn做特征工程?
如何使用机器学习神器sklearn做特征工程?
|
3月前
|
机器学习/深度学习 存储 分布式计算
Hadoop与机器学习的融合:案例研究
【8月更文第28天】随着大数据技术的发展,Hadoop已经成为处理大规模数据集的重要工具。同时,机器学习作为一种数据分析方法,在各个领域都有着广泛的应用。本文将介绍如何利用Hadoop处理大规模数据集,并结合机器学习算法来挖掘有价值的信息。我们将通过一个具体的案例研究——基于用户行为数据预测用户留存率——来展开讨论。
254 0

热门文章

最新文章

下一篇
无影云桌面