Flink 1.10 正式发布!——与Blink集成完成,集成Hive,K8S

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: Apache Flink社区宣布Flink 1.10.0正式发布!本次Release版本修复1.2K个问题,对Flink作业的整体性能和稳定性做了重大改进,同时增加了对K8S,Python的支持。这个版本标志着与Blink集成的完成,并且强化了流式SQL与Hive的集成,本文将详细介绍新功能和主要的改进。

一、内存管理优化


原有TaskExecutor有一些缺点:

流处理和批处理用了不同的配置模型;

流处理的堆外配置RocksDB复杂,需要用户配置;

为了使内存管理更明确直观,Flink 1.10对TaskExecutor内存模型和配置做了重大改进,这个更改使FLink更适合于各种部署环境:K8S,Yarn,Mesos。

这种更改统一了入口点,使得下游框架比如zeppelin的编程更加容易。

image.png


二、集成Kubernetes


这对于想要在容器中使用Flink的用户是一个非常好的消息。

在Flink1.10中推出了Active Kubernetes集成

Flink的ResourceManager(K8sResMngr)与Kubernetes进行本地通信以按需分配新的Pod,类似于Flink的Yarn和Mesos集成。用户还可以利用命名空间为聚合资源消耗有限的多租户环境启动Flink集群。事先配置具有足够权限的RBAC角色和服务帐户。

用户可以简单地参考Kubernetes配置选项,然后使用以下命令在CLI中将作业提交到Kubernetes上的现有Flink会话:

./bin/flink run -d -e kubernetes-session -Dkubernetes.cluster-id=<ClusterId> examples/streaming/WindowJoin.jar


三、集成Hive


Flink 1.10通过开发将Hive集成到Flink,可用于生产环境。

并且支持大部分Hive版本,Flink支持Hive版本列表:

  • 1.0
  • 1.0.0
  • 1.0.1
  • 1.1
  • 1.1.0
  • 1.1.1
  • 1.2
  • 1.2.0
  • 1.2.1
  • 1.2.2
  • 2.0
  • 2.0.0
  • 2.0.1
  • 2.1
  • 2.1.0
  • 2.1.1
  • 2.2
  • 2.2.0
  • 2.3
  • 2.3.0
  • 2.3.1
  • 2.3.2
  • 2.3.3
  • 2.3.4
  • 2.3.5
  • 2.3.6
  • 3.1
  • 3.1.0
  • 3.1.1
  • 3.1.2

需要引入依赖

<!-- Flink Dependency -->
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-connector-hive_2.11</artifactId>
  <version>1.10.0</version>
  <scope>provided</scope>
</dependency>
<dependency>
  <groupId>org.apache.flink</groupId>
  <artifactId>flink-table-api-java-bridge_2.11</artifactId>
  <version>1.10.0</version>
  <scope>provided</scope>
</dependency>
<!-- Hive Dependency -->
<dependency>
    <groupId>org.apache.hive</groupId>
    <artifactId>hive-exec</artifactId>
    <version>${hive.version}</version>
    <scope>provided</scope>
</dependency>

连接Hive代码

val settings = EnvironmentSettings.newInstance().useBlinkPlanner().inBatchMode().build()
val tableEnv = TableEnvironment.create(settings)
val name            = "myhive"
val defaultDatabase = "mydatabase"
val hiveConfDir     = "/opt/hive-conf" // a local path
val version         = "2.3.4"
val hive = new HiveCatalog(name, defaultDatabase, hiveConfDir, version)
tableEnv.registerCatalog("myhive", hive)
// set the HiveCatalog as the current catalog of the session
tableEnv.useCatalog("myhive")


四、PyFlink:支持UDF


从Flink 1.10开始,PyFlink开始支持UDF函数。

用户还可以pip使用以下方法轻松安装PyFlink :

pip install apache-flink

image.png

微信图片_20220526223846.png


五、其他重要变化


  • Flink现在可以编译并在Java 11上运行。
  • 一个新的Elasticsearch sink,完全支持Elasticsearch 7.x版本。
  • Kafka 0.8 和 0.9 版本已经被废,不再支持。
  • 删除了非认证网络流量配置选项taskmanager.network.credit.model。
  • 删除了旧版Web UI。
相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。 &nbsp; &nbsp; 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
Prometheus Kubernetes 监控
Prometheus 与 Kubernetes 的集成
【8月更文第29天】随着容器化应用的普及,Kubernetes 成为了管理这些应用的首选平台。为了有效地监控 Kubernetes 集群及其上的应用,Prometheus 提供了一个强大的监控解决方案。本文将详细介绍如何在 Kubernetes 集群中部署和配置 Prometheus,以便对容器化应用进行有效的监控。
823 4
|
Kubernetes Devops 持续交付
DevOps实践:使用Docker和Kubernetes实现持续集成和部署网络安全的守护盾:加密技术与安全意识的重要性
【8月更文挑战第27天】本文将引导读者理解并应用DevOps的核心理念,通过Docker和Kubernetes的实战案例,深入探讨如何在现代软件开发中实现自动化的持续集成和部署。文章不仅提供理论知识,还结合真实示例,旨在帮助开发者提升效率,优化工作流程。
|
7月前
|
存储 Kubernetes 调度
|
Kubernetes Cloud Native 流计算
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
304 3
|
Prometheus Kubernetes 监控
Grafana 与 Kubernetes 的集成
【8月更文第29天】Grafana 是一个开源的仪表板和可视化平台,它支持多种数据源,可以用来创建美观的仪表板和图表。Kubernetes (K8s) 是一个流行的容器编排平台,用于自动化容器应用的部署、扩展和管理。将 Grafana 与 Kubernetes 集成起来,可以方便地监控 Kubernetes 集群的状态和性能指标。本文将详细介绍如何配置和使用 Grafana 来监控 Kubernetes 集群。
441 4
|
Kubernetes jenkins 持续交付
Kubernetes CI/CD 集成:持续交付的最佳实践
【8月更文第29天】随着微服务架构和容器化的普及,Kubernetes 成为了运行容器化应用的事实标准。为了确保应用能够快速迭代并稳定发布,持续集成/持续部署(CI/CD)流程变得至关重要。本文将介绍如何将 Kubernetes 集成到 CI/CD 流程中,并提供一些最佳实践。
738 1
|
Kubernetes jenkins 持续交付
在K8S中,Jenkins如何集成K8S集群?
在K8S中,Jenkins如何集成K8S集群?
|
Kubernetes jenkins 持续交付
Jenkins 与 Kubernetes 的集成:实现高效的资源管理和自动化部署
【8月更文第31天】随着微服务架构的普及,Kubernetes 已经成为了容器编排的事实标准。Kubernetes 提供了一种强大的方式来管理容器化的应用程序,而 Jenkins 则是持续集成与持续部署(CI/CD)领域的一个重要工具。将 Jenkins 与 Kubernetes 集成,不仅可以充分利用 Kubernetes 的资源管理能力,还能通过 Jenkins 实现自动化构建、测试和部署,从而提高开发效率和部署速度。本文将详细介绍如何将 Jenkins 集成到 Kubernetes 环境中,并提供具体的代码示例。
1201 0
|
SQL 关系型数据库 HIVE
实时计算 Flink版产品使用问题之如何将PostgreSQL数据实时入库Hive并实现断点续传
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

推荐镜像

更多