Java实现高效随机数算法的示例代码---梅森旋转算法(Mersenne twister)

本文涉及的产品
文档翻译,文档翻译 1千页
图片翻译,图片翻译 100张
语种识别,语种识别 100万字符
简介: Java实现高效随机数算法的示例代码梅森旋转算法(Mersenne twister)是一个伪随机数发生算法。由松本真和西村拓士在1997年开发,基于有限二进制字段上的矩阵线性递归。可以快速产生高质量的伪随机数,修正了古典随机数发生算法的很多缺陷。最为广泛使用Mersenne Twister的一种变体是MT19937,可以产生32位整数序列。
import java.util.Random;

/**
 * MT19937的Java实现
 */
public class MTRandom extends Random {
  
  // Constants used in the original C implementation
  private final static int UPPER_MASK = 0x80000000;
  private final static int LOWER_MASK = 0x7fffffff;

  private final static int N = 624;
  private final static int M = 397;
  private final static int MAGIC[] = { 0x0, 0x9908b0df };
  private final static int MAGIC_FACTOR1 = 1812433253;
  private final static int MAGIC_FACTOR2 = 1664525;
  private final static int MAGIC_FACTOR3 = 1566083941;
  private final static int MAGIC_MASK1  = 0x9d2c5680;
  private final static int MAGIC_MASK2  = 0xefc60000;
  private final static int MAGIC_SEED  = 19650218;
  private final static long DEFAULT_SEED = 5489L;

  // Internal state
  private transient int[] mt;
  private transient int mti;
  private transient boolean compat = false;

  // Temporary buffer used during setSeed(long)
  private transient int[] ibuf;

  /**
   * The default constructor for an instance of MTRandom. This invokes
   * the no-argument constructor for java.util.Random which will result
   * in the class being initialised with a seed value obtained by calling
   * System.currentTimeMillis().
   */
  public MTRandom() { }

  /**
   * This version of the constructor can be used to implement identical
   * behaviour to the original C code version of this algorithm including
   * exactly replicating the case where the seed value had not been set
   * prior to calling genrand_int32.
   * <p>
   * If the compatibility flag is set to true, then the algorithm will be
   * seeded with the same default value as was used in the original C
   * code. Furthermore the setSeed() method, which must take a 64 bit
   * long value, will be limited to using only the lower 32 bits of the
   * seed to facilitate seamless migration of existing C code into Java
   * where identical behaviour is required.
   * <p>
   * Whilst useful for ensuring backwards compatibility, it is advised
   * that this feature not be used unless specifically required, due to
   * the reduction in strength of the seed value.
   *
   * @param compatible Compatibility flag for replicating original
   * behaviour.
   */
  public MTRandom(boolean compatible) {
    super(0L);
    compat = compatible;
    setSeed(compat?DEFAULT_SEED:System.currentTimeMillis());
  }

  /**
   * This version of the constructor simply initialises the class with
   * the given 64 bit seed value. For a better random number sequence
   * this seed value should contain as much entropy as possible.
   *
   * @param seed The seed value with which to initialise this class.
   */
  public MTRandom(long seed) {
    super(seed);
  }

  /**
   * This version of the constructor initialises the class with the
   * given byte array. All the data will be used to initialise this
   * instance.
   *
   * @param buf The non-empty byte array of seed information.
   * @throws NullPointerException if the buffer is null.
   * @throws IllegalArgumentException if the buffer has zero length.
   */
  public MTRandom(byte[] buf) {
    super(0L);
    setSeed(buf);
  }

  /**
   * This version of the constructor initialises the class with the
   * given integer array. All the data will be used to initialise
   * this instance.
   *
   * @param buf The non-empty integer array of seed information.
   * @throws NullPointerException if the buffer is null.
   * @throws IllegalArgumentException if the buffer has zero length.
   */
  public MTRandom(int[] buf) {
    super(0L);
    setSeed(buf);
  }

  // Initializes mt[N] with a simple integer seed. This method is
  // required as part of the Mersenne Twister algorithm but need
  // not be made public.
  private final void setSeed(int seed) {

    // Annoying runtime check for initialisation of internal data
    // caused by java.util.Random invoking setSeed() during init.
    // This is unavoidable because no fields in our instance will
    // have been initialised at this point, not even if the code
    // were placed at the declaration of the member variable.
    if (mt == null) mt = new int[N];

    // ---- Begin Mersenne Twister Algorithm ----
    mt[0] = seed;
    for (mti = 1; mti < N; mti++) {
      mt[mti] = (MAGIC_FACTOR1 * (mt[mti-1] ^ (mt[mti-1] >>> 30)) + mti);
    }
    // ---- End Mersenne Twister Algorithm ----
  }

  /**
   * This method resets the state of this instance using the 64
   * bits of seed data provided. Note that if the same seed data
   * is passed to two different instances of MTRandom (both of
   * which share the same compatibility state) then the sequence
   * of numbers generated by both instances will be identical.
   * <p>
   * If this instance was initialised in 'compatibility' mode then
   * this method will only use the lower 32 bits of any seed value
   * passed in and will match the behaviour of the original C code
   * exactly with respect to state initialisation.
   *
   * @param seed The 64 bit value used to initialise the random
   * number generator state.
   */
  public final synchronized void setSeed(long seed) {
    if (compat) {
      setSeed((int)seed);
    } else {

      // Annoying runtime check for initialisation of internal data
      // caused by java.util.Random invoking setSeed() during init.
      // This is unavoidable because no fields in our instance will
      // have been initialised at this point, not even if the code
      // were placed at the declaration of the member variable.
      if (ibuf == null) ibuf = new int[2];

      ibuf[0] = (int)seed;
      ibuf[1] = (int)(seed >>> 32);
      setSeed(ibuf);
    }
  }

  /**
   * This method resets the state of this instance using the byte
   * array of seed data provided. Note that calling this method
   * is equivalent to calling "setSeed(pack(buf))" and in particular
   * will result in a new integer array being generated during the
   * call. If you wish to retain this seed data to allow the pseudo
   * random sequence to be restarted then it would be more efficient
   * to use the "pack()" method to convert it into an integer array
   * first and then use that to re-seed the instance. The behaviour
   * of the class will be the same in both cases but it will be more
   * efficient.
   *
   * @param buf The non-empty byte array of seed information.
   * @throws NullPointerException if the buffer is null.
   * @throws IllegalArgumentException if the buffer has zero length.
   */
  public final void setSeed(byte[] buf) {
    setSeed(pack(buf));
  }

  /**
   * This method resets the state of this instance using the integer
   * array of seed data provided. This is the canonical way of
   * resetting the pseudo random number sequence.
   *
   * @param buf The non-empty integer array of seed information.
   * @throws NullPointerException if the buffer is null.
   * @throws IllegalArgumentException if the buffer has zero length.
   */
  public final synchronized void setSeed(int[] buf) {
    int length = buf.length;
    if (length == 0) throw new IllegalArgumentException("Seed buffer may not be empty");
    // ---- Begin Mersenne Twister Algorithm ----
    int i = 1, j = 0, k = (N > length ? N : length);
    setSeed(MAGIC_SEED);
    for (; k > 0; k--) {
      mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >>> 30)) * MAGIC_FACTOR2)) + buf[j] + j;
      i++; j++;
      if (i >= N) { mt[0] = mt[N-1]; i = 1; }
      if (j >= length) j = 0;
    }
    for (k = N-1; k > 0; k--) {
      mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >>> 30)) * MAGIC_FACTOR3)) - i;
      i++;
      if (i >= N) { mt[0] = mt[N-1]; i = 1; }
    }
    mt[0] = UPPER_MASK; // MSB is 1; assuring non-zero initial array
    // ---- End Mersenne Twister Algorithm ----
  }

  /**
   * This method forms the basis for generating a pseudo random number
   * sequence from this class. If given a value of 32, this method
   * behaves identically to the genrand_int32 function in the original
   * C code and ensures that using the standard nextInt() function
   * (inherited from Random) we are able to replicate behaviour exactly.
   * <p>
   * Note that where the number of bits requested is not equal to 32
   * then bits will simply be masked out from the top of the returned
   * integer value. That is to say that:
   * <pre>
   * mt.setSeed(12345);
   * int foo = mt.nextInt(16) + (mt.nextInt(16) << 16);</pre>
   * will not give the same result as
   * <pre>
   * mt.setSeed(12345);
   * int foo = mt.nextInt(32);</pre>
   *
   * @param bits The number of significant bits desired in the output.
   * @return The next value in the pseudo random sequence with the
   * specified number of bits in the lower part of the integer.
   */
  protected final synchronized int next(int bits) {
    // ---- Begin Mersenne Twister Algorithm ----
    int y, kk;
    if (mti >= N) {       // generate N words at one time

      // In the original C implementation, mti is checked here
      // to determine if initialisation has occurred; if not
      // it initialises this instance with DEFAULT_SEED (5489).
      // This is no longer necessary as initialisation of the
      // Java instance must result in initialisation occurring
      // Use the constructor MTRandom(true) to enable backwards
      // compatible behaviour.

      for (kk = 0; kk < N-M; kk++) {
        y = (mt[kk] & UPPER_MASK) | (mt[kk+1] & LOWER_MASK);
        mt[kk] = mt[kk+M] ^ (y >>> 1) ^ MAGIC[y & 0x1];
      }
      for (;kk < N-1; kk++) {
        y = (mt[kk] & UPPER_MASK) | (mt[kk+1] & LOWER_MASK);
        mt[kk] = mt[kk+(M-N)] ^ (y >>> 1) ^ MAGIC[y & 0x1];
      }
      y = (mt[N-1] & UPPER_MASK) | (mt[0] & LOWER_MASK);
      mt[N-1] = mt[M-1] ^ (y >>> 1) ^ MAGIC[y & 0x1];

      mti = 0;
    }

    y = mt[mti++];

    // Tempering
    y ^= (y >>> 11);
    y ^= (y << 7) & MAGIC_MASK1;
    y ^= (y << 15) & MAGIC_MASK2;
    y ^= (y >>> 18);
    // ---- End Mersenne Twister Algorithm ----
    return (y >>> (32-bits));
  }

  // This is a fairly obscure little code section to pack a
  // byte[] into an int[] in little endian ordering.

  /**
   * This simply utility method can be used in cases where a byte
   * array of seed data is to be used to repeatedly re-seed the
   * random number sequence. By packing the byte array into an
   * integer array first, using this method, and then invoking
   * setSeed() with that; it removes the need to re-pack the byte
   * array each time setSeed() is called.
   * <p>
   * If the length of the byte array is not a multiple of 4 then
   * it is implicitly padded with zeros as necessary. For example:
   * <pre>  byte[] { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06 }</pre>
   * becomes
   * <pre>  int[] { 0x04030201, 0x00000605 }</pre>
   * <p>
   * Note that this method will not complain if the given byte array
   * is empty and will produce an empty integer array, but the
   * setSeed() method will throw an exception if the empty integer
   * array is passed to it.
   *
   * @param buf The non-null byte array to be packed.
   * @return A non-null integer array of the packed bytes.
   * @throws NullPointerException if the given byte array is null.
   */
  public static int[] pack(byte[] buf) {
    int k, blen = buf.length, ilen = ((buf.length+3) >>> 2);
    int[] ibuf = new int[ilen];
    for (int n = 0; n < ilen; n++) {
      int m = (n+1) << 2;
      if (m > blen) m = blen;
      for (k = buf[--m]&0xff; (m & 0x3) != 0; k = (k << 8) | buf[--m]&0xff);
      ibuf[n] = k;
    }
    return ibuf;
  }
}
目录
相关文章
|
2月前
|
负载均衡 NoSQL 算法
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
这篇文章是关于Java面试中Redis相关问题的笔记,包括Redis事务实现、集群方案、主从复制原理、CAP和BASE理论以及负载均衡算法和类型。
一天五道Java面试题----第十天(简述Redis事务实现--------->负载均衡算法、类型)
|
2月前
|
搜索推荐 算法 Java
手写快排:教你用Java写出高效排序算法!
快速排序(QuickSort)是经典的排序算法之一,基于分治思想,平均时间复杂度为O(n log n),广泛应用于各种场合。在这篇文章中,我们将手写一个Java版本的快速排序,从基础实现到优化策略,并逐步解析代码背后的逻辑。
79 1
|
2月前
|
设计模式 缓存 算法
揭秘策略模式:如何用Java设计模式轻松切换算法?
【8月更文挑战第30天】设计模式是解决软件开发中特定问题的可重用方案。其中,策略模式是一种常用的行为型模式,允许在运行时选择算法行为。它通过定义一系列可互换的算法来封装具体的实现,使算法的变化与客户端分离。例如,在电商系统中,可以通过定义 `DiscountStrategy` 接口和多种折扣策略类(如 `FidelityDiscount`、`BulkDiscount` 和 `NoDiscount`),在运行时动态切换不同的折扣逻辑。这样,`ShoppingCart` 类无需关心具体折扣计算细节,只需设置不同的策略即可实现灵活的价格计算,符合开闭原则并提高代码的可维护性和扩展性。
40 2
|
2月前
|
安全 算法 Java
java系列之~~网络通信安全 非对称加密算法的介绍说明
这篇文章介绍了非对称加密算法,包括其定义、加密解密过程、数字签名功能,以及与对称加密算法的比较,并解释了非对称加密在网络安全中的应用,特别是在公钥基础设施和信任网络中的重要性。
|
2月前
|
Java
Java系类 之 生成随机数(random()和Random类)
这篇文章介绍了Java中生成随机数的两种方法:使用`Math.random()`方法和`Random`类的实例方法,并提供了示例代码展示如何使用这些方法生成特定范围或特定条件下的随机数。
|
2月前
|
搜索推荐 算法 Java
经典排序算法之-----选择排序(Java实现)
这篇文章通过Java代码示例详细解释了选择排序算法的实现过程,包括算法的基本思想、核心代码、辅助函数以及测试结果,展示了如何通过选择排序对数组进行升序排列。
经典排序算法之-----选择排序(Java实现)
|
2月前
|
搜索推荐 算法 Java
|
2月前
|
存储 算法 Java
LeetCode经典算法题:打家劫舍java详解
LeetCode经典算法题:打家劫舍java详解
53 2
|
2月前
|
人工智能 算法 Java
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
LeetCode经典算法题:井字游戏+优势洗牌+Dota2参议院java解法
41 1
|
2月前
|
数据采集 搜索推荐 算法
【高手进阶】Java排序算法:从零到精通——揭秘冒泡、快速、归并排序的原理与实战应用,让你的代码效率飙升!
【8月更文挑战第21天】Java排序算法是编程基础的重要部分,在算法设计与分析及实际开发中不可或缺。本文介绍内部排序算法,包括简单的冒泡排序及其逐步优化至高效的快速排序和稳定的归并排序,并提供了每种算法的Java实现示例。此外,还探讨了排序算法在电子商务、搜索引擎和数据分析等领域的广泛应用,帮助读者更好地理解和应用这些算法。
24 0
下一篇
无影云桌面