一文掌握物体检测库TensorFlow 2.x Object Detection安装

简介: tensorflow object detection api一个框架,它可以很容易地构建、训练和部署对象检测模型,并且是一个提供了众多基于COCO数据集、Kitti数据集、Open Images数据集、AVA v2.1数据集和iNaturalist物种检测数据集上提供预先训练的对象检测模型集合。

这是机器未来的第4篇文章

写在前面:

  • 博客简介:专注AIoT领域,追逐未来时代的脉搏,记录路途中的技术成长!
  • 专栏简介:记录博主从0到1掌握物体检测工作流的过程,具备自定义物体检测器的能力
  • 面向人群:具备深度学习理论基础的学生或初级开发者
  • 专栏计划:接下来会逐步发布跨入人工智能的系列博文,敬请期待
  • Python零基础快速入门系列
  • 快速入门Python数据科学系列
  • 人工智能开发环境搭建系列
  • 机器学习系列
  • 物体检测快速入门系列
  • 自动驾驶物体检测系列
  • ......

@[toc]

1. 概述

tensorflow object detection api一个框架,它可以很容易地构建、训练和部署对象检测模型,并且是一个提供了众多基于COCO数据集、Kitti数据集、Open Images数据集、AVA v2.1数据集和iNaturalist物种检测数据集上提供预先训练的对象检测模型集合。

tensorflow object detection api是目前最主流的目标检测框架之一,主流的目标检测模型如图所示:snipaste20220513_094828

2. 预置条件

为了顺利按照本手册安装tensroflow object detection api,请参考Windows部署Docker GPU深度学习开发环境安装必备的工具。

若自行创建安装条件,请确保已经满足以下条件

  • 支持python3.8以上版本
  • 支持cuda、cudnn(可选)
  • 支持git

本手册使用docker运行环境。

3. 安装步骤

3.1 Docker环境

3.1.1 启动docker

启动docker桌面客户端,如图所示:1

3.1.2 启动容器

在windows平台可以启动命令行工具或者windows terminal工具(App Store下载),这里使用terminal工具。

输入以下命令,查看当前存在的images列表

PS C:\Users\xxxxx> docker images
REPOSITORY               TAG                 IMAGE ID       CREATED       SIZE
docker/getting-started   latest              bd9a9f733898   5 weeks ago   28.8MB
tensorflow/tensorflow    2.8.0-gpu-jupyter   cc9a9ae2a5af   6 weeks ago   5.99GB

可以看到之前安装的tensorflow-2.8.0-gpu-jupyter镜像,现在基于这个镜像启动容器

docker run --gpus all -itd -v e:/dockerdir/docker_work/:/home/zhou/ -p 8888:8888 -p 6006:6006 --ipc=host cc9a9ae2a5af  jupyter notebook --no-browser --ip=0.0.0.0 --allow-root --NotebookApp.token= --notebook-dir='/home/zhou/'

命令释义: docker run:表示基于镜像启动容器 --gpus all:不加此选项,nvidia-smi命令会不可用 -i: 交互式操作。 -t: 终端。 -d:后台运行,需要使用【docker exec -it 容器id /bin/bash】进入容器 -v e:/dockerdir/docker_work/:/home/zhou/:将windows平台的e:/dockerdir/docker_work/目录映射到docker的ubuntu系统的/home/zhou/目录下,实现windows平台和docker系统的文件共享 -p 8888:8888 -p 6006:6006:表示将windows系统的8888、6006端口映射到docker的8888、6006端口,这两个端口分别为jupyter notebook和tensorboard的访问端口 --ipc=host:用于多个容器之间的通讯 cc9a9ae2a5af:tensorflow-2.8.0-gpu-jupyter镜像的IMAGE ID jupyter notebook --no-browser --ip=0.0.0.0 --allow-root --NotebookApp.token= --notebook-dir='/home/zhou/': docker开机启动命令,这里启动jupyter

3.1.3 使用vscode访问docker container

启动vscode后,选择docker工具栏,在启动的容器上,右键选择附着到VsCode22

3.1.4 更换docker容器ubuntu系统的安装源为国内源

在vscode软件界面上,选择【文件】-【打开文件夹】,选择根目录【/】,找到【/etc/apt/sources.list】,将ubuntu的安装源全部切换为aliyun源,具体操作为:将【archive.ubuntu.com】修改为【mirrors.aliyun.com】即可,修改后如下:

# See http://help.ubuntu.com/community/UpgradeNotes for how to upgrade to
# newer versions of the distribution.
deb http://mirrors.aliyun.com/ubuntu/ focal main restricted
# deb-src http://mirrors.aliyun.com/ubuntu/ focal main restricted
## Major bug fix updates produced after the final release of the
## distribution.
deb http://mirrors.aliyun.com/ubuntu/ focal-updates main restricted
# deb-src http://mirrors.aliyun.com/ubuntu/ focal-updates main restricted
## N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu
## team. Also, please note that software in universe WILL NOT receive any
## review or updates from the Ubuntu security team.
deb http://mirrors.aliyun.com/ubuntu/ focal universe
# deb-src http://mirrors.aliyun.com/ubuntu/ focal universe
deb http://mirrors.aliyun.com/ubuntu/ focal-updates universe
# deb-src http://mirrors.aliyun.com/ubuntu/ focal-updates universe
## N.B. software from this repository is ENTIRELY UNSUPPORTED by the Ubuntu
## team, and may not be under a free licence. Please satisfy yourself as to
## your rights to use the software. Also, please note that software in
## multiverse WILL NOT receive any review or updates from the Ubuntu
## security team.
deb http://mirrors.aliyun.com/ubuntu/ focal multiverse
# deb-src http://mirrors.aliyun.com/ubuntu/ focal multiverse
deb http://mirrors.aliyun.com/ubuntu/ focal-updates multiverse
# deb-src http://mirrors.aliyun.com/ubuntu/ focal-updates multiverse
## N.B. software from this repository may not have been tested as
## extensively as that contained in the main release, although it includes
## newer versions of some applications which may provide useful features.
## Also, please note that software in backports WILL NOT receive any review
## or updates from the Ubuntu security team.
deb http://mirrors.aliyun.com/ubuntu/ focal-backports main restricted universe multiverse
# deb-src http://mirrors.aliyun.com/ubuntu/ focal-backports main restricted universe multiverse
## Uncomment the following two lines to add software from Canonical's
## 'partner' repository.
## This software is not part of Ubuntu, but is offered by Canonical and the
## respective vendors as a service to Ubuntu users.
# deb http://archive.canonical.com/ubuntu focal partner
# deb-src http://archive.canonical.com/ubuntu focal partner
deb http://security.ubuntu.com/ubuntu/ focal-security main restricted
# deb-src http://security.ubuntu.com/ubuntu/ focal-security main restricted
deb http://security.ubuntu.com/ubuntu/ focal-security universe
# deb-src http://security.ubuntu.com/ubuntu/ focal-security universe
deb http://security.ubuntu.com/ubuntu/ focal-security multiverse
# deb-src http://security.ubuntu.com/ubuntu/ focal-security multiverse
  • 执行如下命令,更新配置
apt-get update;apt-get -f install; apt-get upgrade
  • 更多aliyun的源配置访问:阿里云安装源传送门

3.1.5 验证GPU是否加载成功(在电脑有Nvidia显卡的情况下)

  • 输入nvidia-smi查看GPU使用情况,nvcc -V查询cuda版本
root@cc58e655b170:/home/zhou# nvidia-smi
Tue Mar 22 15:08:57 2022       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.85       Driver Version: 472.47       CUDA Version: 11.4     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|                               |                      |               MIG M. |
|===============================+======================+======================|
|   0  NVIDIA GeForce ...  Off  | 00000000:01:00.0 Off |                  N/A |
| N/A   48C    P8     9W /  N/A |    153MiB /  6144MiB |    ERR!      Default |
|                               |                      |                  N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes:                                                                  |
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |
|        ID   ID                                                   Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+
root@cc58e655b170:/home/zhou# nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2021 NVIDIA Corporation
Built on Sun_Feb_14_21:12:58_PST_2021
Cuda compilation tools, release 11.2, V11.2.152
Build cuda_11.2.r11.2/compiler.29618528_0

从nvcc -V的日志,可以看出cuda版本为11.2

  • 输入以下命令,查询cuDNN版本
python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))"

输出结果如下:

root@cc58e655b170:/usr# python -c "import tensorflow as tf;print(tf.reduce_sum(tf.random.normal([1000, 1000])))"
2022-03-22 15:26:13.281719: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1525] Created device /job:localhost/replica:0/task:0/device:GPU:0 with 3951 MB memory:  -> device: 0, name: NVIDIA GeForce GTX 1660 Ti, pci bus id: 0000:01:00.0, compute capability: 7.5
tf.Tensor(-2613.715, shape=(), dtype=float32)

从输出日志,可以看到GPU:NVIDIA GeForce GTX 1660 Ti已经加载到docker,cuDNN版本为7.5

3.2 Windows开发环境

同Docker环境,验证cuda和cuDNN安装情况。

3.3 下载tensorflow object detection api项目源码

  • 在home/zhou目录下创建tensorflow的目录
cd /home/zhou; mkdir tensorflow; cd tensorflow
  • 下载源码
git clone https://github.com/tensorflow/models.git

下载完毕后,默认文件名名称为models-master, 将文件名重命名为models,保持文件名和平台一致

mv models-matser models

如果网速不好,直接下载zip压缩包吧3下载完毕后的文档结构如图所示:

tensorflow/
└─ models/
   ├─ community/
   ├─ official/
   ├─ orbit/
   ├─ research/
   └── ...

3.4 安装配置protobuf

Tensorflow对象检测API使用Protobufs来配置模型和训练参数。在使用框架之前,必须下载并编译Protobuf库。

  • 回到用户目录
cd /home/zhou
  • 下载protobuf 这里下载的已经预编译好的protobuf
wget -c https://github.com/protocolbuffers/protobuf/releases/download/v3.19.4/protoc-3.19.4-linux-x86_64.zip
  • 解压 先执行mkdir protoc-3.19.4创建目录,然后执行unzip protoc-3.19.4-linux-x86_64.zip -d protoc-3.19.4/解压到制定目录protoc-3.19.4
root@cc58e655b170:/home/zhou# mkdir protoc-3.19.4
root@cc58e655b170:/home/zhou# unzip protoc-3.19.4-linux-x86_64.zip -d protoc-3.19.4/
Archive:  protoc-3.19.4-linux-x86_64.zip
   creating: protoc-3.19.4/include/
   creating: protoc-3.19.4/include/google/
   creating: protoc-3.19.4/include/google/protobuf/
  inflating: protoc-3.19.4/include/google/protobuf/wrappers.proto  
  inflating: protoc-3.19.4/include/google/protobuf/source_context.proto  
  inflating: protoc-3.19.4/include/google/protobuf/struct.proto  
  inflating: protoc-3.19.4/include/google/protobuf/any.proto  
  inflating: protoc-3.19.4/include/google/protobuf/api.proto  
  inflating: protoc-3.19.4/include/google/protobuf/descriptor.proto  
   creating: protoc-3.19.4/include/google/protobuf/compiler/
  inflating: protoc-3.19.4/include/google/protobuf/compiler/plugin.proto  
  inflating: protoc-3.19.4/include/google/protobuf/timestamp.proto  
  inflating: protoc-3.19.4/include/google/protobuf/field_mask.proto  
  inflating: protoc-3.19.4/include/google/protobuf/empty.proto  
  inflating: protoc-3.19.4/include/google/protobuf/duration.proto  
  inflating: protoc-3.19.4/include/google/protobuf/type.proto  
   creating: protoc-3.19.4/bin/
  inflating: protoc-3.19.4/bin/protoc  
  inflating: protoc-3.19.4/readme.txt
  • 配置protoc 在~/.bashrc文件的末尾添加如下代码
export PATH=$PATH:/home/zhou/protoc-3.19.4/bin

执行如下命令,使其生效

source ~/.bashrc

执行echo $PATH查看是否生效

root@cc58e655b170:/home/zhou/protoc-3.19.4/bin# echo $PATH
/home/zhou/protoc-3.19.4/bin:/home/zhou/protoc-3.19.4/bin:/home/zhou/protoc-3.19.4/bin:/root/.vscode-server/bin/c722ca6c7eed3d7987c0d5c3df5c45f6b15e77d1/bin/remote-cli:/usr/local/nvidia/bin:/usr/local/cuda/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/home/zhou/protoc-3.19.4/bin

可以看到protoc的安装目录/home/zhou/protoc-3.19.4/bin已经添加到PATH了。

3.5 将proto后缀文件转换为python可识别格式

  • 切换目录
cd /home/zhou/tensorflow/models/research/
  • 查看转换前的目录文件列表
ls object_detection/protos/
  • 4转换proto文件格式为python可识别序列化文件
protoc object_detection/protos/*.proto --python_out=.
  • 转换后,如下所示
ls object_detection/protos/

5

3.6 安装coco api

从TensorFlow 2.x开始, pycocotools包被列为对象检测API的依赖项。理想情况下,这个包应该在安装对象检测API时安装,如下面安装对象检测API一节所述,但是由于各种原因,安装可能会失败,因此更简单的方法是提前安装这个包,在这种情况下,稍后的安装将被跳过。

pip install cython
pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI

默认指标是基于Pascal VOC评估中使用的那些指标。要使用COCO对象检测指标,在配置文件的eval_config消息中添加metrics_set: "coco_detection_metrics"。要使用COCO实例分割度量,在配置文件的eval_config消息中添加metrics_set: "coco_mask_metrics"

3.7 安装object detection api

  • 当前的工作路径应为
root@cc58e655b170:/home/zhou/tensorflow/models/research# pwd
/home/zhou/tensorflow/models/research
  • 安装object detection api
cp object_detection/packages/tf2/setup.py .
python -m pip install --use-feature=2020-resolver .

安装过程会持续一段时间,安装完毕后,可以执行如下代码,测试安装是否完成。

python object_detection/builders/model_builder_tf2_test.py

输出如下:

......
I0322 16:48:09.677789 140205126002496 efficientnet_model.py:144] round_filter input=192 output=384
I0322 16:48:10.876914 140205126002496 efficientnet_model.py:144] round_filter input=192 output=384
I0322 16:48:10.877072 140205126002496 efficientnet_model.py:144] round_filter input=320 output=640
I0322 16:48:11.294571 140205126002496 efficientnet_model.py:144] round_filter input=1280 output=2560
I0322 16:48:11.337533 140205126002496 efficientnet_model.py:454] Building model efficientnet with params ModelConfig(width_coefficient=2.0, depth_coefficient=3.1, resolution=600, dropout_rate=0.5, blocks=(BlockConfig(input_filters=32, output_filters=16, kernel_size=3, num_repeat=1, expand_ratio=1, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=16, output_filters=24, kernel_size=3, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=24, output_filters=40, kernel_size=5, num_repeat=2, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=40, output_filters=80, kernel_size=3, num_repeat=3, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=80, output_filters=112, kernel_size=5, num_repeat=3, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=112, output_filters=192, kernel_size=5, num_repeat=4, expand_ratio=6, strides=(2, 2), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise'), BlockConfig(input_filters=192, output_filters=320, kernel_size=3, num_repeat=1, expand_ratio=6, strides=(1, 1), se_ratio=0.25, id_skip=True, fused_conv=False, conv_type='depthwise')), stem_base_filters=32, top_base_filters=1280, activation='simple_swish', batch_norm='default', bn_momentum=0.99, bn_epsilon=0.001, weight_decay=5e-06, drop_connect_rate=0.2, depth_divisor=8, min_depth=None, use_se=True, input_channels=3, num_classes=1000, model_name='efficientnet', rescale_input=False, data_format='channels_last', dtype='float32')
INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_create_ssd_models_from_config): 33.12s
I0322 16:48:11.521103 140205126002496 test_util.py:2373] time(__main__.ModelBuilderTF2Test.test_create_ssd_models_from_config): 33.12s
[       OK ] ModelBuilderTF2Test.test_create_ssd_models_from_config
[ RUN      ] ModelBuilderTF2Test.test_invalid_faster_rcnn_batchnorm_update
INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_invalid_faster_rcnn_batchnorm_update): 0.0s
I0322 16:48:11.532667 140205126002496 test_util.py:2373] time(__main__.ModelBuilderTF2Test.test_invalid_faster_rcnn_batchnorm_update): 0.0s
[       OK ] ModelBuilderTF2Test.test_invalid_faster_rcnn_batchnorm_update
[ RUN      ] ModelBuilderTF2Test.test_invalid_first_stage_nms_iou_threshold
INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_invalid_first_stage_nms_iou_threshold): 0.0s
I0322 16:48:11.535152 140205126002496 test_util.py:2373] time(__main__.ModelBuilderTF2Test.test_invalid_first_stage_nms_iou_threshold): 0.0s
[       OK ] ModelBuilderTF2Test.test_invalid_first_stage_nms_iou_threshold
[ RUN      ] ModelBuilderTF2Test.test_invalid_model_config_proto
INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_invalid_model_config_proto): 0.0s
I0322 16:48:11.535965 140205126002496 test_util.py:2373] time(__main__.ModelBuilderTF2Test.test_invalid_model_config_proto): 0.0s
[       OK ] ModelBuilderTF2Test.test_invalid_model_config_proto
[ RUN      ] ModelBuilderTF2Test.test_invalid_second_stage_batch_size
INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_invalid_second_stage_batch_size): 0.0s
I0322 16:48:11.539124 140205126002496 test_util.py:2373] time(__main__.ModelBuilderTF2Test.test_invalid_second_stage_batch_size): 0.0s
[       OK ] ModelBuilderTF2Test.test_invalid_second_stage_batch_size
[ RUN      ] ModelBuilderTF2Test.test_session
[  SKIPPED ] ModelBuilderTF2Test.test_session
[ RUN      ] ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor
INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor): 0.0s
I0322 16:48:11.542018 140205126002496 test_util.py:2373] time(__main__.ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor): 0.0s
[       OK ] ModelBuilderTF2Test.test_unknown_faster_rcnn_feature_extractor
[ RUN      ] ModelBuilderTF2Test.test_unknown_meta_architecture
INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_unknown_meta_architecture): 0.0s
I0322 16:48:11.543226 140205126002496 test_util.py:2373] time(__main__.ModelBuilderTF2Test.test_unknown_meta_architecture): 0.0s
[       OK ] ModelBuilderTF2Test.test_unknown_meta_architecture
[ RUN      ] ModelBuilderTF2Test.test_unknown_ssd_feature_extractor
INFO:tensorflow:time(__main__.ModelBuilderTF2Test.test_unknown_ssd_feature_extractor): 0.0s
I0322 16:48:11.545147 140205126002496 test_util.py:2373] time(__main__.ModelBuilderTF2Test.test_unknown_ssd_feature_extractor): 0.0s
[       OK ] ModelBuilderTF2Test.test_unknown_ssd_feature_extractor
----------------------------------------------------------------------
Ran 24 tests in 42.982s
OK (skipped=1)

看到结果为OK,则表示安装成功,接下来就可以开始物体检测之旅了。

  • 《物体检测快速入门系列》快速导航:

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
3月前
|
并行计算 PyTorch TensorFlow
Ubuntu安装笔记(一):安装显卡驱动、cuda/cudnn、Anaconda、Pytorch、Tensorflow、Opencv、Visdom、FFMPEG、卸载一些不必要的预装软件
这篇文章是关于如何在Ubuntu操作系统上安装显卡驱动、CUDA、CUDNN、Anaconda、PyTorch、TensorFlow、OpenCV、FFMPEG以及卸载不必要的预装软件的详细指南。
6117 3
|
24天前
|
编解码 人工智能 缓存
自学记录鸿蒙API 13:实现多目标识别Object Detection
多目标识别技术广泛应用于动物识别、智能相册分类和工业检测等领域。本文通过学习HarmonyOS的Object Detection API(API 13),详细介绍了如何实现一个多目标识别应用,涵盖从项目初始化、核心功能实现到用户界面设计的全过程。重点探讨了目标类别识别、边界框生成、高精度置信度等关键功能,并分享了性能优化与功能扩展的经验。最后,作者总结了学习心得,并展望了未来结合语音助手等创新应用的可能性。如果你对多目标识别感兴趣,不妨从基础功能开始,逐步实现自己的创意。
195 60
|
3月前
|
PyTorch TensorFlow 算法框架/工具
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
本文提供了在Ubuntu 18.04操作系统的NVIDIA Jetson平台上安装深度学习和计算机视觉相关库的详细步骤,包括PyTorch、OpenCV、ONNX、TensorFlow等。
210 1
Jetson环境安装(一):Ubuntu18.04安装pytorch、opencv、onnx、tensorflow、setuptools、pycuda....
|
3月前
|
并行计算 TensorFlow 算法框架/工具
tensorflow安装
tensorflow安装——GPU版
71 2
|
3月前
|
并行计算 PyTorch TensorFlow
环境安装(一):Anaconda3+pytorch1.6.0+cuda10.0+cudnn7.6.4+tensorflow1.15+pycocotools+pydensecrf
这篇文章详细介绍了如何在Anaconda环境下安装和配置深度学习所需的库和工具,包括PyTorch 1.6.0、CUDA 10.0、cuDNN 7.6.4、TensorFlow 1.15、pycocotools和pydensecrf,并提供了pip国内镜像源信息以及Jupyter Notebook和Anaconda的基本操作。
386 0
环境安装(一):Anaconda3+pytorch1.6.0+cuda10.0+cudnn7.6.4+tensorflow1.15+pycocotools+pydensecrf
|
3月前
|
机器学习/深度学习 算法 安全
基于深度学习的目标检测的介绍(Introduction to object detection with deep learning)
基于深度学习的目标检测的介绍(Introduction to object detection with deep learning)
42 0
|
5月前
|
并行计算 TensorFlow 算法框架/工具
Windows11+CUDA12.0+RTX4090如何配置安装Tensorflow2-GPU环境?
本文介绍了如何在Windows 11操作系统上,配合CUDA 12.0和RTX4090显卡,通过创建conda环境、安装特定版本的CUDA、cuDNN和TensorFlow 2.10来配置TensorFlow GPU环境,并提供了解决可能遇到的cudnn库文件找不到错误的具体步骤。
757 3
|
5月前
|
TensorFlow 算法框架/工具 Python
【Mac 系统】解决VSCode用Conda成功安装TensorFlow但程序报错显示红色波浪线Unable to import ‘tensorflow‘ pylint(import-error)
本文解决在Mac系统上使用VSCode时遇到的TensorFlow无法导入问题,原因是Python解析器未正确设置为Conda环境下的版本。通过在VSCode左下角选择正确的Python解析器,即可解决import TensorFlow时报错和显示红色波浪线的问题。
206 9
|
5月前
|
UED 开发工具 iOS开发
Uno Platform大揭秘:如何在你的跨平台应用中,巧妙融入第三方库与服务,一键解锁无限可能,让应用功能飙升,用户体验爆棚!
【8月更文挑战第31天】Uno Platform 让开发者能用同一代码库打造 Windows、iOS、Android、macOS 甚至 Web 的多彩应用。本文介绍如何在 Uno Platform 中集成第三方库和服务,如 Mapbox 或 Google Maps 的 .NET SDK,以增强应用功能并提升用户体验。通过 NuGet 安装所需库,并在 XAML 页面中添加相应控件,即可实现地图等功能。尽管 Uno 平台减少了平台差异,但仍需关注版本兼容性和性能问题,确保应用在多平台上表现一致。掌握正确方法,让跨平台应用更出色。
71 0
|
5月前
|
数据采集 API TensorFlow
简化目标检测流程:深入探讨TensorFlow Object Detection API的高效性与易用性及其与传统方法的比较分析
【8月更文挑战第31天】TensorFlow Object Detection API 是一项强大的工具,集成多种先进算法,支持 SSD、Faster R-CNN 等模型架构,并提供预训练模型,简化目标检测的开发流程。用户只需准备数据集并按要求处理,选择预训练模型进行微调训练即可实现目标检测功能。与传统方法相比,该 API 极大地减少了工作量,提供了从数据预处理到结果评估的一站式解决方案,降低了目标检测的技术门槛,使初学者也能快速搭建高性能系统。未来,我们期待看到更多基于此 API 的创新应用。
44 0

热门文章

最新文章