数据结构与算法笔记目录: 《恋上数据结构》 笔记目录想加深 Java 基础推荐看这个: Java 强化笔记目录
我的《恋上数据结构》源码(第1季 + 第2季):https://github.com/szluyu99/Data_Structure_Note
B树是一种平衡的多路搜索树,多用于文件系统、数据库的实现;
仔细观察B树,有什么眼前一亮的特点?
- 1 个节点可以存储超过 2 个元素、可以拥有超过 2 个子节点
- 拥有二叉搜索树的一些性质
- 平衡,每个节点的所有子树高度一致
- 比较矮
m阶B树的性质
数据库实现中一般用几阶B树?
- 200 ~ 300
B树 vs 二叉搜索树
B树 和 二叉搜索树,在逻辑上是等价的;
多代节点合并,可以获得一个超级节点
- 2 代合并的超级节点,最多拥有 4 个子节点(至少是 4 阶B树)
- 3 代合并的超级节点,最多拥有 8 个子节点(至少是 8 阶B树)
- n 代合并的超级节点,最多拥有 2^n^ 个子节点( 至少是 2^n^ 阶B树)
m 阶 B树,最多需要 log2^m^ 代合并;
搜索
跟二叉搜索树的搜索类似:
- 先在节点内部从小到大开始搜索元素
- 如果命中,搜索结束
- 如果未命中,再去对应的子节点中搜索元素,重复步骤 1
添加 – 上溢
新添加的元素必定是添加到叶子节点:
插入 55:
插入 95:
再插入 98 呢?(假设这是一棵 4阶B树)
- 最右下角的叶子节点的元素个数将超过限制
- 这种现象可以称之为:上溢(overflow)
添加 – 上溢的解决(假设5阶)
上溢节点的元素个数必然等于 m;
假设上溢节点最中间元素的位置为 k
- 将 k 位置的元素向上与父节点合并
- 将 [0, k - 1] 和 [k + 1, m - 1] 位置的元素分裂成 2 个子节点
这 2 个子节点的元素个数,必然都不会低于最低限制(┌ m/2 ┐ − 1)一次分裂完毕后,有可能导致父节点上溢,依然按照上述方法解决
- 最极端的情况,有可能一直分裂到根节点
添加示例:
插入 98:
插入 52:
插入 54:
删除
删除 – 叶子节点
假如需要删除的元素在叶子节点中,那么直接删除即可;
例:删除 30
删除 – 非叶子节点
假如需要删除的元素在非叶子节点中
- 先找到前驱或后继元素,覆盖所需删除元素的值
- 再把前驱或后继元素删除
例:删除 60
非叶子节点的前驱或后继元素,必定在叶子节点中;
- 所以这里的删除前驱或后继元素 ,就是最开始提到的情况:删除的元素在叶子节点中
- 真正的删除元素都是发生在叶子节点中;
删除 – 下溢
删除 22?(假设这是一棵 5阶B树)
- 叶子节点被删掉一个元素后,元素个数可能会低于最低限制(
≥
┌ m/2 ┐ − 1 ) - 这种现象称为:下溢(underflow)
删除 – 下溢的解决
下溢节点的元素数量必然等于 ┌ m/2 ┐ − 2
如果下溢节点临近的兄弟节点,有至少 ┌ m/2 ┐ 个元素,可以向其借一个元素
- 将父节点的元素 b 插入到下溢节点的 0 位置(最小位置)
- 用兄弟节点的元素 a(最大的元素)替代父节点的元素 b
- 这种操作其实就是:旋转
如果下溢节点临近的兄弟节点,只有 ┌ m/2 ┐ − 1 个元素
- 将父节点的元素 b 挪下来跟左右子节点进行合并
- 合并后的节点元素个数等于┌ m/2 ┐ + ┌ m/2 ┐ − 2,不超过 m − 1
- 这个操作可能会导致父节点下溢,依然按照上述方法解决,下溢现象可能会一直往上传播
删除示例:
4阶B树
如果先学习 4 阶 B 树(2 - 3 - 4 树),将能更好地学习理解红黑树:
4阶B树的性质:
- 所有节点能存储的元素个数 x :1 ≤ x ≤ 3
- 所有非叶子节点的子节点个数 y :2 ≤ y ≤ 4
添加:从 1 添加到 22