数据可视化赋能大数据价值释放,助力大数据价值应用落地 echarts,d3.js

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 今天,大数据已无所不在,并且正越来越广泛的被应用到金融、互联网、科学、电商、工业甚至渗透到我们生活的方方面面中,获取的渠道也越来越便利。然而,很多公司企业只知道大数据的重要性,疯狂的存储搜集行业相关的大数据,生怕没有抓住大数据的风口导致自己的落后,但却不知道怎样利用这些数据指导自己的业务和项目方向。让大数据静静地躺在公司的数据库里,白白的浪费了大数据真正的价值,也失去了大数据的意义。还有就是随着大数据时代的来临,信息每天都在以爆炸式的速度增长,其复杂性也越来越高;其次,随着越来越多数据可视化的需求产生,地图、3D物理结构等技术将会被更加广泛的使用。所以,当人类的认知能力越发受到传统可视

今天,大数据已无所不在,并且正越来越广泛的被应用到金融、互联网、科学、电商、工业甚至渗透到我们生活的方方面面中,获取的渠道也越来越便利。

然而,很多公司企业只知道大数据的重要性,疯狂的存储搜集行业相关的大数据,生怕没有抓住大数据的风口导致自己的落后,但却不知道怎样利用这些数据指导自己的业务和项目方向。让大数据静静地躺在公司的数据库里,白白的浪费了大数据真正的价值,也失去了大数据的意义。

还有就是随着大数据时代的来临,信息每天都在以爆炸式的速度增长,其复杂性也越来越高;其次,随着越来越多数据可视化的需求产生,地图、3D物理结构等技术将会被更加广泛的使用。所以,当人类的认知能力越发受到传统可视化形式的限制时,隐藏在大数据背后的价值就难以发挥出来,如果因为展示形式的限制导致数据的可读性和及时性降低,从而影响用户的理解和决策的快速实施,那么,数据可视化将失去其价值。

我们每天都在说大数据,那数据到底能“大”到怎样的程度?也许你已经听说过以下结论:世界上90%的数据是在过去几年内产生的。事实上,过去三十年中,全世界的数据量大约每两年增加10倍,有专家估计,到2020年的时候,数据的年度产出量会达到4300%甚至更多,这已远远超出了著名的摩尔定律理论;所以,面临着这样的巨大挑战,大数据时代的数据可视化就凸显的尤为重要。

目前市面上也已经具备了很多成熟的BI数据可视化工具,如Tableau、NBI大数据分析平台等等,从产品属性来看后者更符合中国用户习惯。

大数据时代的数据可视化具有哪些特征?

1、把庞杂的大数据直观的展现到决策的面前,才能更加节省时间,使工作变得更加高效;

2、利用数据更好的分析用户,针对性的为用户提供服务,增加数据背后与用户的互动性;

3、在数据爆炸增长时代,只有很好的把握时效,才能更好敏锐的掌握机遇。

数据可视化的应用场景有哪些?

1、对于数据可视化最有代表的场景应用之一,不得不提的就是大屏了。其中典型的就双十一购物狂欢节采用实时数据大屏,带给观众更加准确、震撼和清晰的体验


 image.png

2、当然,更多的还是利用直观灵活多样的图表展示为企业提供业务驱动力,为企业提供决策支持。

image.png

 

数据可视化的展现方式在不断优化

技术的快速发展和不断变化的认知框架正在为人类打开新的视野,促使艺术与技术相结合而产生新型的数据可视化形式。以更细化的形式表达数据,以更全面的维度理解数据,以更美的方式呈现数据,使可视化更加具有冲击力。纵观历史,随着人们接受并习惯了一种新的发明后,接下来就是对其进行一步步的优化和美化,以配合时代的要求,数据可视化也是如此,因为它正在变得司空见惯,良好的阅读体验和视觉表现将成为其与竞品所区分的特征之一。

image.png

 

总结

数据可视化是一门同时结合了科学、设计和艺术的复杂学科,其核心意义始终在于清晰的叙述和艺术化的呈现,这些需要依靠数据分析师和设计师的精心策划而不是仅有炫酷的效果,最终达到帮助用户理解数据和做出决策的目标,不再让数据沉睡,才能发挥它巨大的价值和无限的潜力。

利用NBI大数据分析平台可视化分析平台可以轻松构建各种数据可视化,实现数据价值落地。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
11天前
|
JavaScript 前端开发 算法
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
11天前
|
JavaScript 前端开发 API
JavaScript中通过array.map()实现数据转换、创建派生数组、异步数据流处理、复杂API请求、DOM操作、搜索和过滤等,array.map()的使用详解(附实际应用代码)
array.map()可以用来数据转换、创建派生数组、应用函数、链式调用、异步数据流处理、复杂API请求梳理、提供DOM操作、用来搜索和过滤等,比for好用太多了,主要是写法简单,并且非常直观,并且能提升代码的可读性,也就提升了Long Term代码的可维护性。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
19天前
|
数据采集 机器学习/深度学习 数据可视化
探索大数据分析的无限可能:R语言的应用与实践
探索大数据分析的无限可能:R语言的应用与实践
61 9
|
24天前
|
运维 自然语言处理 算法
云栖实录 | 大模型在大数据智能运维的应用实践
云栖实录 | 大模型在大数据智能运维的应用实践
|
11天前
|
移动开发 运维 供应链
通过array.some()实现权限检查、表单验证、库存管理、内容审查和数据处理;js数组元素检查的方法,some()的使用详解,array.some与array.every的区别(附实际应用代码)
array.some()可以用来权限检查、表单验证、库存管理、内容审查和数据处理等数据校验工作,核心在于利用其短路机制,速度更快,节约性能。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
11天前
|
供应链 JavaScript 前端开发
通过array.every()实现数据验证、权限检查和一致性检查;js数组元素检查的方法,every()的使用详解,array.some与array.every的区别(附实际应用代码)
array.every()可以用来数据验证、权限检查、一致性检查等数据校验工作,核心在于利用其短路机制,速度更快,节约性能。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
11天前
|
JavaScript 前端开发 Java
详解js柯里化原理及用法,探究柯里化在Redux Selector 的场景模拟、构建复杂的数据流管道、优化深度嵌套函数中的精妙应用
柯里化是一种强大的函数式编程技术,它通过将函数分解为单参数形式,实现了灵活性与可复用性的统一。无论是参数复用、延迟执行,还是函数组合,柯里化都为现代编程提供了极大的便利。 从 Redux 的选择器优化到复杂的数据流处理,再到深度嵌套的函数优化,柯里化在实际开发中展现出了非凡的价值。如果你希望编写更简洁、更优雅的代码,柯里化无疑是一个值得深入学习和实践的工具。从简单的实现到复杂的应用,希望这篇博客能为你揭开柯里化的奥秘,助力你的开发之旅! 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一
|
11天前
|
数据采集 JavaScript 前端开发
JavaScript中通过array.filter()实现数组的数据筛选、数据清洗和链式调用,JS中数组过滤器的使用详解(附实际应用代码)
用array.filter()来实现数据筛选、数据清洗和链式调用,相对于for循环更加清晰,语义化强,能显著提升代码的可读性和可维护性。博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
27天前
|
人工智能 数据可视化 Java
打造动态数据可视化:JavaScript与AI的完美结合
在快速发展的技术世界中,Java作为广泛应用的编程语言,持续占据重要地位。本文探讨如何将AI技术,如DeepSeek,融入Java高级应用开发,实现智能代码生成、优化与自动化测试,提升开发效率和代码质量。AI通过分析大量代码库,自动生成高质量代码片段,减少重复劳动,并提出优化建议,帮助开发者编写更高效、安全的代码。未来,AI将进一步推动Java开发智能化,降低开发门槛,助力创新。
|
27天前
|
人工智能 数据可视化 JavaScript
打造动态数据可视化:JavaScript与AI的完美结合
本文介绍如何通过JavaScript和AI技术实现动态数据可视化,以实时股票数据为例。使用JavaScript动态更新网页内容,Chart.js绘制股票价格走势图,并通过DeepSeek API进行趋势预测。用户输入股票代码后,网页展示历史价格并预测未来走势,增强用户体验。结合AI技术,不仅提升网页功能性,还为用户提供智能化的数据洞察。

热门文章

最新文章